

Masters Project Report

Eval: A Gene Set Comparison System

Evan Keibler
evan@cse.wustl.edu

 - 2 -

Table of Contents

Table of Contents...- 2 -
Chapter 1: Introduction.. - 5 -

1.1 Gene Structure..- 5 -
1.2 Gene Predictors.. - 7 -
1.3 Eval...- 8 -

Chapter 2: User Level Documentation...- 10 -
2.1 GTF Validator.. - 10 -
2.2 Eval Overview.. - 12 -

2.2.1 Statistics..- 12 -
Gene Level...- 14 -
Transcript Level...- 14 -
Exon Level...- 16 -
Nuc Level...- 17 -
Signal Level:.. - 17 -

2.2.2 Evaluate...- 18 -
2.2.3 General Statistics...- 18 -
2.2.4 Filter..- 18 -
2.2.5 Graph...- 19 -
2.2.6 Overlap..- 20 -
2.2.7 Distribution.. - 21 -

2.3 Eval GUI..- 22 -
2.3.1 Overview...- 22 -
2.3.2 Loading the GUI..- 22 -
2.3.3 Menus..- 23 -
2.3.4 Eval Screen.. - 24 -
2.3.5 GenStats Screen...- 24 -
2.3.6 Filter Screen..- 24 -
2.3.7 Graph Screen...- 25 -
2.3.8 Overlap Screen..- 26 -
2.3.9 Dist Screen.. - 26 -

2.4 Eval Command Line Interfaces..- 27 -
2.4.1 evaluate_gtf.pl...- 27 -
2.4.2 get_general_stats.pl...- 27 -
2.4.3 filter_gtfs.pl... - 28 -
2.4.4 graph_gtfs.pl..- 28 -
2.4.5 get_overlap_stats.pl...- 29 -
2.4.6 get_distribution.pl...- 30 -

Chapter 3: Code Level Documentation..- 32 -
3.1 Overview..- 32 -

3.1.1 Data Types... - 32 -
3.1.2 Naming Schemes...- 33 -

3.2 GTF.pm..- 33 -

 - 3 -

3.2.1 Overview...- 33 -
3.2.2 GTF Object.. - 34 -

Global Variables...- 34 -
Constructor...- 35 -
Accessor Functions..- 36 -
Modifier Functions...- 37 -
Internal Functions...- 37 -

3.2.3 Gene Object... - 38 -
Global Variables...- 38 -
Constructor...- 38 -
Accessor Functions..- 38 -
Modifier Functions...- 40 -

3.2.4 Transcript Object...- 40 -
Global Variables...- 40 -
Constructor...- 42 -
Accessor Functions..- 42 -
Modifier Functions...- 44 -
Internal Functions...- 45 -

3.2.5 Feature Object...- 46 -
Global Variables...- 46 -
Constructor...- 47 -
Accessor Functions..- 48 -
Modifier Functions...- 50 -

3.3 Eval.pm..- 51 -
3.3.1 Definition of Statistics...- 51 -

Top-level Statistics Functions..- 52 -
Gene Level Statistics Functions...- 52 -
Transcript Level Statistics Functions...- 53 -
Exon Level Statistics Functions...- 54 -
Nuc Level Statistics Functions...- 54 -
Signal Level Statistics Functions...- 55 -

3.3.2 Evaluate Functions..- 56 -
List Comparison Functions..- 56 -
Object Comparison Functions..- 58 -
Initialization and Clean up Functions..- 59 -
Data Collection Functions..- 60 -
Statistic Calculation Functions...- 61 -

3.3.3 General Statistics Functions..- 61 -
3.3.4 Filter Funcitons...- 62 -
3.3.5 Graph Functions..- 64 -
3.3.6 Overlap Functions...- 67 -

Specific Overlap Type Functions...- 67 -
Cluster Building Functions..- 68 -
Overlap Test Functions..- 70 -

3.3.7 Distribution functions..- 70 -
3.3.8 General Functions and Variables..- 72 -

 - 4 -

Global Variables...- 72 -
Functions..- 72 -

3.4 eval.pl...- 72 -
3.4.1 Overview...- 72 -

Data Types..- 73 -
3.4.2 Constants...- 73 -
3.4.3 Global Variables..- 74 -
3.4.4 Functions...- 75 -

Initialization Functions...- 75 -
General Functions..- 75 -
Menu Functions..- 76 -
Options Functions..- 77 -
Eval Frame Functions...- 77 -
GenStats Frame Functions...- 79 -
Filter Frame Functions...- 79 -
Graph Frame Functions..- 80 -
Overlap Statistics Frame Functions... - 81 -
Dist Frame Functions...- 82 -

3.5 Eval Scripts..- 83 -
3.5.1 evaluate_gtf.pl...- 83 -
3.5.2 get_general_stats.pl...- 83 -
3.5.3 filter_gtfs.pl... - 83 -
3.5.4 graph_gtfs.pl..- 84 -
3.5.5 get_overlap_stats.pl...- 84 -
3.5.6 get_distribution.pl...- 84 -

Chapter 4: Future Work..- 85 -
Appendix A: GTF File Format Specification...- 86 -
Appendix B: Fasta File Format..- 89 -
Appendix C: Conservation File Format...- 90 -
Appendix D: Example Eval Report...- 91 -
Index...- 101 -
References..- 104 -

 - 5 -

Chapter 1: Introduction

1.1 Gene Structure

As large amounts of high quality genomic sequence became available for many
organisms the problem of gene-finding changed from the analysis of small segments of
the genome, typically less than 150,000 bases, to find a single protein coding gene, to the
analysis of large amounts of genomic sequence, up to billions of bases, to identify all
protein coding genes [8, 11, 14]. In the past, analysis typically consisted of a single
expert manually looking at all available evidence and trying to annotate the gene
structure by hand. This is possible when annotating small amounts of sequence for a
small number of genes, but is very expensive and tedious. Attempting to annotate
billions of bases of sequence by hand is not feasible due to the enormous number of man-
hours it would require. Therefore automated gene prediction systems are required to
process this large amount of data [5, 6, 8, 11, 14]. Before further discussion of current
automated gene prediction systems a brief introduction to gene structure, the output of
these systems, is needed.

The central dogma of molecular biology states that DNA is transcribed into RNA which
is in turn translated into protein. A gene can be defined as the region of DNA which
codes for a particular protein and all adjacent regions which regulate its expression.
Gene expression is the processes by which the information encoded in a gene is decoded
into a protein. Genes are processed differently in two types of organisms: prokaryotes,
which are organisms whose cells have no nucleus, and eukaryotes, which are organisms
whose cells do have a nucleus. The translation process is identical for these two types of
organisms but the transcription process differs [13].

In prokaryotic organisms the region of the gene which is transcribed into RNA is a
continuous stretch of DNA, all of which is then translated into a protein. In eukaryotic
organisms the translated region of the gene, the region from which the protein will be
built, is normally not continuous. Instead, the transcribed region is comprised of
alternating stretches of exons and introns, where only the exon regions will be translated.
The transcription process takes place in the cell nucleus and transcribes both exons and
introns into a primary RNA transcript in the same order as they appear in the genomic
sequence. A process called splicing removes the intron regions and combines the exons
regions to create the mature messenger RNA (mRNA). The mRNA is then exported
from the nucleus and translated into a protein [13] (Figure 1).

In both prokaryotes and eukaryotes RNA is transcribed into protein in three base pair
increments called codons. A protein is a string of amino acids, and each codon signals
that a specific amino acid should be added to the end of the protein. Every mRNA should
have length evenly divisible by three since it must contain only whole codons [13].

 - 6 -

In certain situations the same primary transcript can be spliced in more than one way to
yield different proteins. This is called alternative splicing. Primary RNA transcripts are
not spliced differently in the same cell at the same time but instead in different cells or at
different times [13].

This paper deals primarily with eukaryotic gene predictions. Though the software
described can be used for prokaryotic gene predictions also, many of the tools described
have significantly less utility when no genes contain introns.

Figure 1. Gene transcription and translation in eukaryotes (A) and prokaryotes (B).

In its natural state, DNA is double stranded helix made up of pairs of four different
nucleotides: adenine, guanine, cytosine, and thymine which are referred to by the
symbols A, C, G, and T respectively. A always pairs with T and C always pairs with G
and these pairings are said to be complementary. Genes may reside on either strand but
are always processed from the 5’ end to the 3’ end. The 5’ end of one strand is the 3’ end
of the other so each strand is the reverse complement of the other [13]. This means that if
one were to write the string of nucleotides which make up each strand of a DNA
sequence from the 5’ end to the 3’ end separately, each strand’s string would be made of
only four characters (A, C, G, and T) and each would be the same as the other except that
the nucleotides would occur in the reverse order and all nucleotides would be replaced
with their complementary nucleotide. Typically the strands are called the plus strand and
the minus strand, and the 5’ end of the plus strand is considered position 1.

A multi-exon eukaryotic gene has the following structure. It begins with a promoter
region, which regulates gene expression, and is followed by a transcribed but non-

 - 7 -

protein-coding region called the 5' untranslated region (UTR). Next comes the initial
exon, which contains the start codon, and an alternating series of introns and internal
exons, followed by the terminal exon, which contains the stop codon. The terminal exon
is followed by another non-coding region called the 3' UTR. The start and stop codons
are specific three base pair long sequences which signal the beginning and the end of the
transcript to the protein creation machinery. The exon-intron boundaries, also known as
splice sites, are signaled by specific two base pair sequences located at the edges of the
intron. The 5' end of an intron is called the donor splice site, and the 3’ end of an intron is
called the acceptor splice site [13].

Figure 2. A typical multi-exon eukaryotic gene structure. The start and stop codons as well as the
examples of both donor and acceptor splice sites are shown in detail.

It is often very difficult to locate all regulatory regions of a gene and knowing the protein
product of a gene is more useful than knowing the location of all regulatory regions so
most automated gene predictors focus on finding only the region of DNA which is
transcribed to RNA [5, 6].

1.2 Gene Predictors

Most modern automated gene prediction systems fall into one of two categories:
transcript alignment based prediction systems and ab initio, de novo or genome-only
prediction systems. The transcript alignment based systems attempt to map known
transcripts from the species being annotated or from other species to the genome being
annotated. If successful, it is highly likely that the region the known transcript was
mapped to is also a gene. The de novo gene predictors use only genomic data to predict
genes. They are generally based on some type of complex probability model, derived
from the expected structure of genes. These computational gene prediction systems
generally have many input parameters, in addition to the sequence to be annotated, which
determine the types and number of genes they predict. Their output is a set of gene
structures, which identify the location and structure of the genes in the input sequence
(i.e. [5, 6, 9, 15]).

One standard file format for storing gene structures is GTF. GTF stands for Gene
Transfer Format. This format facilitates the storage of four types of “features”: exons,

 - 8 -

coding exons, start codons, and stop codons. The difference between an exon and a
coding exon is that a coding exon is both translated and transcribed while a non-coding
exon is only transcribed. In general exons can be located in the UTR region, which
defines them non-coding exons as the UTR is not translated into protein. This distinction
is important both because it is required to determine the protein product of a gene and
because coding exons must obey more rules (i.e. no in-frame stop codons) than non-
coding exons. Each feature takes up one line of the GTF file and stores the information
needed to uniquely identify that feature. Features are grouped into transcripts and
transcripts are grouped into genes. A transcript corresponds to a single RNA transcript as
described above and a gene corresponds to several transcripts which are alternative
splices of each other. A complete specification of the GTF file format can be found in
Appendix A.

1.3 Eval

As stated above, most automated gene prediction systems are typically based on large,
complex probability models with many parameters. Changing these parameters can
change the gene predictor’s performance as measured by the accuracy with which it
predicts the exons and gene structures in a standard annotation. While traditional
measures of accuracy convey the performance of gene predictors [7, 10], these measures
are often not enough to yield insight into why a gene predictor is performing well or
poorly. A deep analysis requires considering many features of a prediction set and its
relation to the standard set, such as the distribution of number of exons per gene, the
distribution of predicted exon length, and accuracy as a function of GC percentage. Such
statistics can reveal which parameters or parameter sets are working well and which need
tuning.

When gene predictors are run on whole mammalian chromosomes they will be
processing ~50-200 million bases of sequence and predicting thousands of genes. When
gene predictors are run on whole mammalian genomes they will be processing up to
billions of bases of sequence and predicting up to tens of thousands of genes (i.e. [9, 15]).
An analysis system is needed to process this large amount of data and present it in a
compact enough form for a human to view.

Because of the size and complexity of automated gene predictors and the volume of data
generated by running them on the ever-growing amount of genomic sequence, we
developed the Eval system. Eval is a software tool for analyzing and comparing gene
sets. These summaries provide a human with a comprehensive overview of the large
quantities of data produced by high-throughput automated gene predictors. It can
compare a standard annotation set to a prediction set and generate a wide range of
statistics showing how and to what extent the sets are similar. It can also compute
statistics on a single set of gene annotations. It includes functionality to produce graphs
of computed statistics versus characteristics of the genes and also graphs of distributions
of any computed statistic across the gene set. It can do multi-way comparison between
gene sets to determine the similarities and differences among multiple gene sets. It can

 - 9 -

also build new gene sets from subsets of the genes which meet a specified set of criteria.
Thus, Eval provides a powerful set of tools for analyzing the differences and similarities
between gene prediction systems and adjusting their behavior.

Eval was primarily written for TWINSCAN [12], a de novo gene predictor. The TWINSCAN
system compares the input genomic sequence to that of another organism, finds the
similarities, and creates a new sequence, called the conservation sequence, which is given
as input to the gene prediction software. Although Eval has some features which are
primarily useful for viewing TWINSCAN gene predictions, such as conservation sequence
graphs, the vast majority of its functionality is very useful for viewing and comparing
gene sets from any source.

Although the GTF file format is a fairly simple and well defined format, data is often
claimed to be in GTF format when it does not comply completely with the specification.
Most data is generated in some proprietary format specific to the particular program or
lab which produced it. These proprietary formats often differ in small subtle ways, such
as the sequence being indexed starting at position 0 or 1, or the start/stop codon being
inside or outside of the initial/terminal exon. If the data is to be effectively shared with
others it must be in a standard, well defined format. Though many labs do convert their
data to GTF format, the files they generate rarely comply completely with the
specification. For this reason the GTF validator was created. The validator allows the
user to verify that the data is in correct GTF format before sharing with others. This
makes communication more efficient because the receiver does not have to locate and fix
the subtle differences between the many file formats.

 - 10 -

Chapter 2: User Level Documentation

This chapter provides user level documentation for the Eval package. Each program’s
input and output is described is described in detail and examples of use-cases for each
program are presented.

All programs and libraries are written in Perl for use on Linux based systems. The
programs have been tested extensively on Red Hat Linux 6 or greater and Perl version 5.6
or greater. The Perl Tk module version 8.0 or greater is required to load the graphical
user interface (GUI) to the Eval package and gnuplot [4] version 3.0 or greater is required
to display graphs when using the GUI. If gnuplot is not in the user’s path the
EVAL_GNUPLOT environment variable should be set to the full path and filename of
gnuplot (i.e. /usr/bin/gnuplot).

Although the GTF specification does not state that all genes in a gtf file must be from the
same sequence or in the same coordinate system, this is a requirement for using the Eval
software. Any GTF file used by any of the programs or libraries described below must
contain annotation of a single sequence with all genes in the same coordinate system (that
of the sequence they annotate).

2.1 GTF Validator

The GTF validator, validate_gtf.pl, has two main functions: verifying correct GTF file
format and verifying that the genes specified by the GTF file do not violate the rules of
gene structure. The validator takes a GTF file and optionally a fasta fil e (see Appendix B
for the fasta file format specification) containing the genomic sequence which the GTF
file annotates. When run without the corresponding genomic sequence, the validator
checks the file for format errors and that no genes violate the rules of gene structure (i.e.
no coding exons after the stop codon, all transcripts contain coding region, etc). When
run with the corresponding sequence the validator also checks that the gene structures
could have come from this sequence (i.e. start and stop codons and splice sites have the
correct sequence, the genes contain no in-frame stop codons prior to any annotated stop
codon, etc.). Checking the GTF file with the sequence can also help to identify indexing
problems in the file (i.e. off by 1 error) but increases the running time drastically.

All GTF fields as well as the <gene_id> and <transcript_id> attributes will be listed in
angled brackets (<field name>) to designate them as GTF field names.

Arguments

These and all other arguments described in this document are listed in the same order
they must be given to the program.

 - 11 -

GTF File The GTF file to validate.
Fasta File The sequence that GTF File annotates, in fasta format. This argument

is optional.

Options

These and all other options described in this document can be given to the program in
any order but must come before all of the arguments to the function.

-t <file> Writes each spliced transcript’s sequence, including the start and stop

codons, to file. This option can only be used if the optional Fasta File
argument is given.

-f Creates a new GTF file with the same name as GTF File but ending in
“.fixed.gtf”. The new file is identical to the original file but has no
GTF format errors. If the input file is very badly formatted it may not
be possible to automatically fix it. “Fixed” files should always be
checked for correctness either by hand or by rerunning validate_gtf.pl.

-s Outputs the <transcript_id> of each transcript containing an in-frame
stop codon prior to either the annotated stop codon or the end of the
gene if no stop codon is annotated.

-c Suppress warnings about missing start/stop codons.
-p Suppress warnings about non-standard splice sites.

Output

The validator’s output is written to standard out. The first five occurrences of any error
or warning are displayed in detail, but details about any additional occurrences are
suppressed. This is done to make the output more readable. Since this program is used
to check for correct file format it often finds systematic errors that occur thousands of
times in a GTF file, and seeing details about a specific format error five times is just as
informative as seeing it a thousand times. Following these detailed descriptions, the total
number of each error and warning is listed. The last data reported are general statistics
about the number of genes, transcripts, and coding exons in the file.

The validator is useful for checking a GTF file for errors before sharing the file or using
it as input to another program. Whenever the GTF file may contain problems (the
program that produced it has changed, the file was imported from somewhere else, etc.) it
should be checked for errors before being shared or used. The validator is also useful for
identifying common gene predictor errors during gene predictor development. Problems
such as in-frame stop codons are identified allowing the developers to find and correct
the error.

Often the source of gene annotation and genomic sequence are different, because
different labs work to sequence organisms and annotate sequence. Also, many version of
a particular sequence are often available, since the sequence, especially if it is a large-
scale sequence like a whole chromosome, is constantly being updated and with more

 - 12 -

reads and better assemblies until a final, complete version of the sequence is made
available. The validator can be used to ensure that the annotation is for some particular
version of the sequence and not some other.

2.2 Eval Overview

The Eval package is used to compare and analyze sets of gene predictions. It has six
main functions which perform different types of gene set comparisons and statistical
calculations. Each of the main functions is described below. This section gives an
overview of what the Eval package can do, not instructions on how to do it. That
information is given in the descriptions of the user interfaces to the Eval package in
sections 2.3 and 2.4.

The inputs to all main Eval functions are sets of GTF files. For a description of the GTF
file format see Appendix A. A set of GTF files is just an ordered list of GTF files each of
which resides in its own coordinate system. When an Eval function compares GTF sets,
the first GTF file from each list is compared to each other, then the second GTF files are
compared, and so on. So, when comparing GTF sets the user must be certain that the
GTF files in the first position of all GTF sets are in the same coordinates as each other, as
are the files in the second position, and so on. In the case of whole genome comparisons,
GTF sets would be loaded which contain a GTF file for each chromosome. Eval would
compare the chromosome 1 GTF from one list to the chromosome 1 GTF from the other
lists, then compare the chromosome 2 GTF files, and so on through the list. For using
Eval to analyze single GTF files, GTF sets can contain only a single GTF file.

Eval is primarily used for gathering data on the coding region of genes. As such, it
ignores any exon type features, as they are used to designate non-coding exons. exon
type features are used to calculate the start and end of transcripts, but are never directly
used in any comparison. Any Eval function which reports statistics on exons is, in fact,
reporting statistics on CDS features (coding exons).

Some of the descriptions below use the term “transcript region”. The transcript region is
defined as the area from the 5’ end of the 5’ most feature of the transcript to the 3’ end of
the 3’ most feature of the transcript. In other words, the entire genomic region which is
transcribed into RNA.

2.2.1 Statistics

Each main function of the Eval package uses the same set of statistics. Comparisons
between sets of gene data require that one set be designated the annotation set and one set
the prediction set. The statistics reported on this comparison show how similar the
prediction set is to the annotation set. Although most statistics do not change when
swapping the annotation and prediction sets (other than the prediction statistics becoming
the annotation statistics and vice versa) some do and the distinction is important.

 - 13 -

The statistics are organized into a hierarchy of three levels: Level, Type, Stat. Stat is the
most specific of the three and each Stat contains a single statistic about the data. Level is
the most general of the three and organizes all Stats into groups which contain data about
similar kinds of objects (i.e. exons, genes, etc). Types are used to further partition all
Stats at a given Level into groups containing data about similar kinds of objects (i.e.
specific types of exons). Objects are designated as being of a certain Level and Type,
and the Stats at a given Level and Type contain data only on the objects which are of that
Level and Type. Each level of the hierarchy is described in detail below and an example
of all Stats at every Level and Type can be seen in Appendix D.

Statistics are split into five Levels: Gene, Transcript, Exon, Nuc, and Signal. The Gene
Level contains statistics which deal with genes, the Transcript Level contains statistics
which deal with transcripts, and so on.

Each Level is further split into Types. Each Type is a subset of the statistics at a given
Level which contain data on a specific subset of the objects at that Level. Whether or not
an object at a given Level is of a certain Type must be able to be determined from that
object alone, without making any comparisons to other objects. Examples of Exon Level
Types are Initial and Terminal, which contain statistics only on exons which are initial or
terminal exons, respectively. Note that determining that an exon is an initial exon or a
terminal exon does not require any comparison to any other gene.

Each Level contains a set of Stats which are calculated for each Type of this Level. Stats
contain the actual data reported by Eval, and are made up of two non-overlapping sets
called General Stats and Comparison Stats. General Stats are those which can be
calculated using a single object (no comparisons are needed). Examples of General Stats
are Average Length and Average Score, since the score and length of an object do not
depend on anything but the object itself. Comparison Stats are those whose calculations
do require comparison to other objects. Comparison Stats are made up of groups of
Substats which are organized into Comparison Stat Types. Comparison Stat Types are
subsets of the objects at a given Level and Type, where membership in the subset
requires comparison to some other object. Examples of Comparison Stat Types are
Overlap and Correct, since the object must overlap or be correct as compared to some
other object. For each Comparison Stat Type the same four Substats are calculated. The
Substats are: Count, Matched, Sensitivity and Specificity. So for the Overlap Comparison
Stat Type, four Stats are calculated for each Type at the current Level: Overlap Count,
Overlap Matched, Overlap Sensitivity, and Overlap Specificity. Count is just the number
of objects of the current Level and Type which are found to be part of this Comparison
Stat Type subset. Matched is the number of annotation objects with which some
prediction object matches to be included in the Comparison Stat Type subset. Sensitivity
is defined as true positives divided by the sum of true positives and false negatives, but is
calculated as Matched divided by the total number of annotation objects of this Level and
Type. A positive indicates that the object is in the subset and a negative indicates that it
is not. Specificity is defined as true positives divided by the sum of true positives and
false positives and is calculated as Count divided by the total number of prediction
objects of this Level and Type. By calculating Sensitivity and Specificity in this way they

 - 14 -

are guaranteed never to exceed 100%. This is not true if they were calculated according
to their definition since two or more prediction objects could match a single annotation
object or a single prediction object could match two or more annotation objects, allowing
the true positive count to be greater than either the total number of annotation objects or
the total number of prediction objects at a given Level and Type.

Appendix D contains an example Eval report which contains all Stats at each Level and
Type.

Below is a definition of each Type and Stat for each Level. Any object mentioned in a
statistics description below can be assumed to be from the set the statistic is being
calculated for unless it is explicitly stated to be an object from the annotation set being
compared against.

Gene Level

Types

All All genes.

General Stats

Count The number of genes.
Ann Count The number of genes in the set being compared against.
Total Transcripts The total number of transcripts in all genes.
Transcripts Per The average number of transcripts per gene.

Comparison Stat Types

Correct
Exact
Overlap
Nuc Overlap
All Introns
All Exons
Exact Intron
Exact Exon
Start Codon
Stop Codon
Start Stop

A gene is in any of the these Comparison Stat Types if and
only if one or more of its transcripts is in the Transcript Level
Comparison Stat Type of the same name.

Transcript Level

Types

All All transcripts.
Complete Transcripts which have both a start and a stop codon.
Incomplete Transcripts which do not have both a start and a stop codon.

 - 15 -

General Stats

Count The total number of transcripts.
Ann Count The total number of transcripts in the set being compared

against.
Average Length The average transcript region length.
Total Length The sum of the length of each transcript region.
Average Coding
 Length

The average coding length of all transcripts, where the coding
length is defined to be the sum of the length of all coding
exons in a transcript.

Total Coding
 Length

The sum of the coding length of each transcript.

Average Score The average of the sum of the scores of all GTF features of all
transcripts.

Total Score The sum of the score of each transcript.
Exons Per The average number of coding exons per transcript.
Total Exons The total number of coding exons in all transcripts.

Comparison Stat Types

Correct A predicted transcript which exactly matches all features in
some annotated transcript. The predicted transcript may
contain features beyond either or both ends of the annotated
transcript as long as the annotated transcript is not “closed”
with a start or stop codon on that end.

Exact A predicted transcript which is identical to some annotated
transcript over their entire length of both transcripts.

Overlap A predicted transcript whose region overlaps some annotated
transcript’s region and is on the same strand.

Nuc Overlap A predicted transcript which has at least one coding exon
which overlaps a coding exon from some annotated transcript
by at least one base pair. The two transcripts must be on the
same strand.

All Introns Each intron in the annotated transcript is also in the predicted
transcript and the predicted transcript contains no additional
introns which overlap the annotated transcript. Similar to the
Correct measure the predicted transcript can contain introns
beyond the end of the annotated transcript if the annotated
transcript is not “closed” with a start or stop codon on that end.

All Exons Similar to the All Introns measure except that all exons instead
of introns must be identical. This is the same as the Correct
measure expect that the start and stop codon are not checked.

Exact Intron A predicted transcript which matches at least one intron
exactly to some intron in an annotated transcript.

Exact Exon A predicted transcript which matches at least one exon exactly
to some exon in an annotated transcript.

 - 16 -

Start Codon A predicted transcript which has exactly the same start codon
as some annotated transcript.

Stop Codon A predicted transcript which has exactly the same stop codon
as some annotated transcript.

Start Stop A predicted transcript which has exactly the same start and
stop codons as some annotated transcript.

Exon Level

When two of the same exons exist in a data set they are treated as a single exon when
calculating the Exon Level Stats. Two of the same exons can exist in the same data set
when transcripts which are alternative splices of each other have some exon in common.
Exons are considered to be the same exon if they have the same <start>, <end>, and
<strand> values. In this way, the Exon Level Stats are a set of statistics on all unique
exons in the data set.

Types

All All coding exons.
Initial The 5’ most coding exon in any multi-exon transcript which

has a start codon.
Internal All coding exons which are not Initial, Terminal or Single.
Terminal The 3’ most coding exon in any multi-exon transcript which

has a stop codon.
Single The only coding exon in any transcript containing only one

coding exon.
Intron All introns.

General Stats

Count The total number of objects.
Ann Count The total number of objects in the set being compared against.
Average Length The average length of all objects.
Total Length The sum of the lengths of all objects.
Average Score The average of the scores of all objects.
Total Score The sum of the scores of all objects.

Comparison Stat Types

Correct A predicted object which is identical (same <start>, <end>,
and <strand> values) to some annotated object.

Overlap A predicted object which overlaps some annotated object on
the same strand.

Overlap 80p A predicted object which overlaps some annotated object on
the same strand by at least 80% of the length of the longer
object.

Splice 5 A predicted object which has the same 5’ boundary as some
annotated object on the same strand.

 - 17 -

Splice 3 A predicted object which has the same 3’ boundary as some
annotated object on the same strand.

Nuc Level

Types

All Any nucleotide covered by any exon.
Initial Any nucleotide covered by an Initial exon.
Internal Any nucleotide covered by an Internal exon.
Terminal Any nucleotide covered by a Terminal exon.
Single Any nucleotide covered by a Single exon.
Intron Any nucleotide covered by an intron.

General Stats

Count The total number of nucleotides.
Ann Count The total number of annotated nucleotides.

Comparison Stat Types

Correct If the Type is not Intron, then a nucleotide is correct anytime
any annotated coding exon overlaps it. If the Type is Intron
then the nucleotide is correct any time any annotated intron
overlaps it.

Signal Level:

Types

Splice Donor The 3’ end of an Initial or Internal exon.
Splice Acceptor The 5’ end of a Terminal or Internal exon.
Start Codon The start codon of any transcript.
Stop Codon The stop codon of any transcript.

General Stats

Count The total number of signals of this Type in the prediction.
Ann Count The total number of signals of this Type in the annotation.

Comparison Stat Types

Correct The signal is correct if is appears exactly in both the prediction
and the annotation. For splice sites this means they have the
same position and are on the same strand. For start and stop
codons this means that all three bases of the codon are in the
same location and on the same strand.

 - 18 -

2.2.2 Evaluate

The Evaluate function is the main function of the Eval package. It is used to compare a
set of prediction GTF files to a set of annotation GTF files and is useful for finding the
degree of similarity between many aspects of the two sets. Comparisons between the two
sets of GTF files are reported as a set of statistics, which is described above. The output
from the Evaluate function is called an Eval report. The Evaluate function is the most
used Eval function and many of the other functions are nothing but alternative ways of
viewing its results.

This function is primarily used for comparing the output from gene predictors to some
standard annotation. It reports to what extent the gene predictions and the annotation are
similar or different. This is useful for judging the performance of a gene predictor. It can
handle comparisons of everything from single genes, to whole chromosomes, to whole
genomes. The function can also be used to compare to sets of predictions to each other to
see how similar they are.

2.2.3 General Statistics

This function is used to get general statistics about a single GTF set. It reports a subset of
the statistics reported by the Evaluate function, containing all Levels, all Types, but only
General Stats. The output of the General Statistics function is also referred to as an Eval
report as it is in the same format as the output from the Evaluate function but with some
values (those for Comparison Stats) left out.

This function is useful for getting a general overview of a single GTF set. When first
dealing with a new genome it is good to know what, on average, genes of this genome
look like. For example, how many exons per transcript does it have? What is the
average exon length? What is the average gene-density? This is useful information
which varies from genome to genome. This function is also useful for tuning parameters
of a gene predictor to output genes with some specific characteristics. Suppose a gene
predictor is currently outputting transcripts which, on average, contain 7 exons and have
a length of 30,000 base pairs, but the organism which it is being run on has genes that, on
average, contain 9 exons and have a length of 40,000 base pairs. This change can
probably be achieved by altering the input parameters to the gene predictor, but gene
predictors are made of complex mathematical models and it is rarely clear how changing
an input parameter will change the output. This function allows the user to check that the
desired changes in the output did occur and that no additional, undesired changes in
others statistics occurred.

2.2.4 Filter

This function is used to select a subset of GTF style objects (Genes, Transcripts, and
Exons) from a GTF set and create a new GTF set from them. The selected subset may be
any subset calculated by the Evaluate function. This includes all Types and Comparison

 - 19 -

Stat Types listed in section 2.2.1 above. The union, intersection, and compliment of any
valid subsets may also be selected.

The Filter function is useful for tacking down bugs or improving performance in gene
predictors. All predicted transcripts which overlap but do not exactly match an annotated
transcript can be selected and checked closer manually to find why they are not exactly
matching it. The Filter function is also good for finding examples. Perhaps a gene which
gene predictor 1 predicts correctly but gene predictor 2 predicts incorrectly is wanted.
This is easy to find using the Filter function but would be tedious to find by hand.

2.2.5 Graph

This function is used to graph a certain statistic as a function of some other computable
value on the objects. The objects first are split into consecutive, non-overlapping bins
according to some X-Split type at some Level (see below). The statistic being graphed is
then computed for each bin. Bins are graphed on the x-axis and the value of the statistic
being computed is graphed on the y-axis.

Level

Gene Separate objects into bins of genes.
Transcript Separate objects into bins of transcripts.
Exon Separate objects into bins of exons.

X-Splits

GC% Separate objects into bins according to each object’s GC percentage.
Match% Separate objects into bins according to the percentage of matched

bases in each object’s conservation sequence.
Mismatch% Separate objects into bins according to the percentage of

mismatched bases in each object’s conservation sequence.
Unaligned% Separate objects into bins according to the percentage of unaligned

bases in each object’s conservation sequence.
Length Separate objects into bins according to the length of each object.

Bins are consecutive, non-overlapping ranges of values of the X-Split type. The number
of bins and size of each bin is determined by parameters to the function. Values for the
y-axis can be any statistic computed in the Evaluate function. If the split is made at the
Exon Level the statistic cannot be from the Transcript of Gene Level because a single
transcript or gene may have had its exons split into more than one bin. Similarly if the
split was done at the Transcript Level, the y-axis statistic cannot be from the Gene Level.

The Graph function is useful for seeing how a statistic is changing as compared to
another property of the objects from which the statistic was computed. Graphing
Transcript Sensitivity against Transcript Length can show if a gene predictor is having
problems predicting short or long transcripts relative to the other. Often times, genes
with different GC percentages have different characteristics [13]. The Graph function
can be used to see if a certain gene predictor is having trouble with genes in a particular

 - 20 -

GC range or just to see how genes in a particular GC range look in general. The
Match%, Mismatch%, and Unaligned% X-Splits are useful primarily with TWINSCAN, but
can also be used with any other gene predictor which uses some secondary sequence.

2.2.6 Overlap

The Overlap function is used to build clusters of GTF style objects which share some
property, called the overlap property. A cluster is defined as a group of objects, each of
which shares the overlap property with at least one other object in the cluster and no
objects outside the cluster. Given one or more GTF sets, this function builds clusters of
objects and outputs statistics describing how the objects were clustered together.
Possible overlap properties are:

Transcript Exact Exon Overlap Transcripts which have one or more exons
in common.

Transcript Exact Intron Overlap Transcripts which have one or more introns
in common.

Transcript Coding Overlap Transcripts whose coding regions overlap
by at least one base pair.

Transcript Region Overlap Transcripts whose regions overlap by at
least one base pair.

Transcript 80p Both Region Overlap Transcripts whose regions overlap by at
least 80% of the length of the longer region.

Transcript 80p Region Overlap Transcripts whose regions overlap by at
least 80% of the length of the shorter
region.

Transcript Exact Overlap Transcripts which are identical (start and
stop codons and all coding exons are the
same).

Exon One Base Overlap Exons which overlap each other by at least
1 base pair.

Exon 80p Both Overlap Exons which overlap each other by at least
80% of the longer exon.

Exon 80p Overlap Exons which overlap each other by at least
80% of the shorter exon.

Exon Exact Overlap Exons which are identical (<start> and
<end> values are the same).

*All overlap properties require that the two objects are on the same strand.

Once the clusters are built they are separated into cluster types. A cluster type
corresponds to a subset of the GTF sets which were given as input to this function and
contain clusters with objects from all and only the GTF sets in the subset. For example
if clusters were built from three sets of GTF files, label them A, B, and C, clusters which
contain objects from A and B and none from C would be one cluster type, and clusters
which contain only objects from B would be another. A cluster type exists for each non-
empty subset of the input GTF sets (this example has seven cluster types: A, B, C, AB,

 - 21 -

AC, BC, and ABC). For each cluster type, the number of clusters in that type, as well as
the number of objects in clusters of this type which came from each input GTF set is
reported. In the example above, if only two clusters of type AB were created and one
contained one object from A and one object from B and the other contained two objects
from A and one from B, the results reported by this function would include a description
of the AB cluster type which would state that it contained two clusters, three objects from
the A input set, and two objects from the B input set.

The Overlap function allows the user to see how multiple sets of gene predictions are
similar to one another. All other functions of Eval do only pair wise comparison but
overlap analysis can find three-way or greater similarities between GTF sets. Though it
is useful for looking a one or two sets, it is most useful for seeing how three or more sets
compare to each other, as other Eval functions can give more detailed analysis of two set
comparisons.

Building clusters of identical genes from a standard annotation set and two prediction sets
from two gene predictors can show how similar the prediction sets are as compared to the
annotation set. It could show that the two gene predictors are predicting the same or
completely separate sets of correct and incorrect genes. If the two gene predictors correct
gene sets have a small intersection and their incorrect gene sets have a large intersection,
then the two gene predictors could be combined to create a system which has both a
higher sensitivity and specificity than either one its own. This would signal that either
gene predictor could benefit from incorporating features of the other.

2.2.7 Distribution

The Distribution function is used to see how the density of objects changes across values
of some property. For example you could use this to view a distribution of Exons Per
Transcript, which would report the number of transcripts with n exons, for all values of n.
Instead of reporting all values of n, the function can report bins of values of n to make the
results easier to read and to allow for continuous values or small sample spaces.

Distributions which can be calculated are:

Transcripts Per Gene The number of transcripts in a gene.
Exons Per Transcript The number of exons in a transcript.
Transcript Length The length of a transcript’s region.
Transcript Coding Length The sum of the length of all coding exons of a

transcript.
Exon Length The length of an exon.
Exon Score The score of an exon.

Distributions are useful for seeing how some property is distributed across the data. The
Evaluate function gives average values but averages can be misleading when they are
coming from certain types of distributions, such as a bi-modal distribution. The average

 - 22 -

value can give no indication of the distribution of values in the data and may even be a
value that is never or rarely seen in the data. The distribution of gene lengths could be
plotted for an annotation set and a prediction set and this could show that the prediction
set is over- or under-predicting short and long genes relative to moderate length genes,
which is something that an average value alone cannot show.

2.3 Eval GUI

2.3.1 Overview

eval.pl is the graphical user interface for the Eval package. It is the easiest way to use the
Eval package and is more efficient when multiple analyses are being run. The user can
load one of more GTF sets into memory and analyze them using the Eval package. This
allows multiple analyses which use the same data set to be run without having to reload
the data to memory. Since whole chromosome or genome data sets are very large,
loading them often takes a significant fraction of the total time of the analysis, so keeping
the data in memory provides a considerable decrease in the total time required for
multiple analyses.

The Eval GUI contains a help system consisting of several postscript files. These files
should be located in a directory called help located off of the directory containing eval.pl.
The files can be moved to some other directory but the EVAL_HELP environment
variable must then be set to that directory in order to view the files (i.e.
/usr/local/eval/help). The GUI attempts to display the files using ghostview (gv) [2]. If
the ghostview program is not in the user’s path, the EVAL_GV environment variable
should be set to the full path and filename of ghostview or some other postscript viewer
program (i.e. /usr/X11R6/bin/gv).

2.3.2 Loading the GUI

Running eval.pl starts the GUI. It has no required arguments but can optionally take one
or more list files to load into memory. A list file is used to load GTF sets into memory.
Each line of a list file contains the information for loading a single GTF file and
optionally nucleotide and conservation sequence files. Each line contains three tab
separated fields and has the following format:

<GTF filename> [nucleotide sequence filename] [conservation sequence filename]

The nucleotide sequence should be in fasta format. Both sequence files are optional, and
either can be included with or without the other. If the conservation sequence is included
and the nucleotide sequence is not, two tabs should be places between the GTF filename
and the conservation filename. All files loaded from a list file make up a single GTF set.

 - 23 -

The program has the following options:

-c Specify a file, other than .evalrc in the users home directory (see section 2.3.3
below), from which to load the users options.

-g Load command line arguments as single GTF files unless they end in .list.
-l Load command line arguments as list files unless they end in .gtf or .gff. This

is the default.
-n Do not load nucleotide sequence or conservation sequence files.
-v Turn verbose mode on. This will send status reports to standard error.
-V Turn really verbose mode on. This is normal verbose mode plus reports of all

errors and warnings generated while loading individual GTF files.
-h Display the usage statement and exit.

The GUI is organized around and provides access to the six main functions of the Eval
package. At the top of the screen is a menu bar which is described in the section 2.3.3
below. Under that is a horizontal bar of buttons, each of which corresponds to one of the
main Eval functions. Clicking one of these buttons displays the screen from which its
function can be run. Each individual function’s screen is described in its own section
below.

2.3.3 Menus

A standard menu bar appears across the top of the window. It contains menus entitled
File, Edit, and Help. Each of these menus are described in detail below.

The File menu contains four commands: Open, Save, Remove and Exit. Open opens a
Open File dialog box which allows the user to open new list or GTF files. Save allows
the user to save any GTF set currently in memory. This is used to save new GTF sets
generated by the Filter function. GTF sets containing only one GTF file save only that
file and allow the user to specify the filename to which it is saved. GTF sets containing
more than one GTF file are saved as a new list file, under a filename selected by the user,
and all GTF files in the set are saved in the same directory as the list file under filenames
of the form filename.#.gtf, where filename is the name the list file was written to and # is
the position of each GTF file in the list. The Remove command allows the user to unload
any of the GTF sets from memory. The final command of the File menu is Exit, which
unloads all GTF sets from memory and closes the GUI.

The Edit menu contains a single command, Options, which brings up the Edit Options
screen. This allows the user to edit his .evalrc file which contains the preferences to be
loaded at startup. The Edit Options screen has two panes. The first allows the user to
select, for each Level, which Stats and Types are included in any Eval report. If a box is
unchecked, it means that that stat or type will be left out of all reports generated. The
second pane allows the user to select the graph resolutions for each type of graph X-Split.
Two options are available for graph resolutions. The first is the Uniform resolution
which allows the user to specify a Minimum X Value, Bin Size, and Number of Bins, and
generates Number of Bins consecutive bins, each having size Bin Width and the first

 - 24 -

starting at Minimum X Value. The second graph resolution type is User Defined. This
allows the user to create bins of any size in any location. The only restrictions are that
bins cannot overlap and there can be no gaps between bins. So, if a bin is defined from
0-100 and a second is defined from 150-300, a new bin from 100-150 is automatically
added. The bottom of the screen has buttons to save the options and close the window.
Closing the window discards any unsaved changes to the options.

The Help menu contains two commands: About, which displays a dialog with general
information about the eval.pl program, and Help, which opens the Eval package
documentation.

2.3.4 Eval Screen

This screen provides access to the Evaluate function of the Eval package. A single
annotation GTF set is selected from the upper listbox and one or more prediction GTF
sets are selected from the lower listbox. The Run Eval button starts the comparison.
Once the calculations are complete the results are displayed in a new window. The report
contains three sections: Summary Statistics, General Statistics, and Detailed Statistics.
The Summary Statistics section reports the Correct Sensitivity and Correct Specificity for
All Genes, All Transcript, All Exons and All Nucleotides. This gives a good overview of
how similar the GTF sets are. The General Statistics section reports all General Stats,
organized into Levels and Types. The Detailed Statistics section reports all Stats, sorted
by Level and Type. Each prediction GTF set has its own column of values in each
section of the report. All sections include Stats on all prediction sets that were selected,
but the General Statistics section also displays the General Stats for the annotation set.
Buttons to close the output window and to save the output are located at the bottom of the
window. The Save button opens a Save File dialog box which allows the user to chose a
file to which the output is saved. Files are saved in text format with each line having the
statistic name on the left followed by the value for each prediction set. Each prediction
has its own column of values and columns are tab separated to make the file easy to load
into a spreadsheet. Each label and value is also padded with spaces to make the report
readable in a standard text editor using a fixed width font. The Close button closes the
window displaying the results.

2.3.5 GenStats Screen

This screen provides access to the General Statistics function of the Eval package. GTF
sets are selected from the listbox and the Get Stats button is used to start the calculations.
The results are displayed and saved in identically the same was as they are on the Eval
screen, except that only the General Statistics section is reported.

2.3.6 Filter Screen

This screen allows the user to filter one or more GTF sets, based on comparison to some
annotation GTF set, using the Filter function of the Eval package. The initial screen is

 - 25 -

for the selection of a single annotation set and one or more prediction sets, exactly as in
the Eval function. The Select Filters button displays the next screen which is used to
select the filter to apply. The top two listboxes allow the user to choose single filters to
use. Selecting a Level in the left listbox displays a set of filters for that Level in the right
listbox. The Add Filter button at the bottom of the screen adds the currently selected
filters to the Filter Key listbox. The Remove Filter button removes all highlighted filters
in the Filter Key listbox. All filters in the Filter Key listbox are assigned one character
alphabetic labels, which are used to represent that filter in the Filter String. The Filter
String tells the program how to apply the filters you have chosen. Each single filter from
the Filter Key listbox specifies a subset of the objects in the GTF sets which are being
filtered and can be combined in several ways. Single filters can be joined with set
intersection by separating them with “&&” (i.e. “A&&B”) or nothing (i.e. “AB”), or with
set union by separating them with “||” (i.e. “A||B”). Filters can also be group with
parenthesis (i.e. “A||(BC)”) to specify the order which in filters should be applied. Filters
may be negated with a set complement by “!” (i.e. “!A” or “!(A||B)”) which selects all
objects which are not selected by the negated filter. The Run button will filter the
selected predictions according to the Filter String, and add the new, filtered GTF sets to
the list of possible GTF sets to use in each Eval function. The filtered GTF sets will be
added under the same name as the GTF set they were created from except that the string
in the bottom textbox is inserted into the name prior to “.gtf” or “.list”. If the bottom
textbox is empty “filtered” is inserted into the name. To save the filtered GTF sets for
future use, use the Save command under the File menu.

2.3.7 Graph Screen

This screen allows users to make Eval style graphs from one or more prediction sets
string the Graph function of the Eval package. The first screen is used to select a single
annotation set and one or more prediction sets from which to make graphs. Graphs are
made only from the prediction sets, not from the annotation set. The Select Graphs
button moves to the next screen where the X-Split and Level are chosen. The top listbox
selects the Level at which the data will be split, and the middle listbox selects the
property by which the data are split. The Selected Graphs listbox shows all the graphs
which will be calculated. The Add button adds the currently selected Level/X-Split
combination to the Selected Graphs listbox. The Remove button removes any currently
selected graphs in the Selected Graphs listbox. The Create Graphs button will calculate
all graphs specified in the Selected Graphs listbox and move to the next screen. All
possible y-values are calculated for each Level/X-Split combination. All graphs are
calculated using the user’s graph resolution options, accessible from the Options
command under the Edit menu. The final screen selects which graphs to display or save.
The top listbox selects one or more prediction sets to include in the graph, the middle
listbox selects the Level/X-Split combination, and the bottom listboxes select the value to
graph on the y-axis. All available y-values for the current Level/X-Split are listed. The
Choose Graphs button will return to the previous screen so that new graphs can be
created. The View button displays the currently selected graph using gnuplot. The Save
button will display a Save File dialog box which saves the graph as a tab delimited text
file. The first line contains the y-value and Level/X-split of this graph the second line

 - 26 -

contains a tab delimited list of the prediction set names. All following lines contain the
bin followed by a tab delimited list of the value of this bin for each prediction set, in the
same order as the names are listed on the second line. Each bin has the format “# - #”
where the first “#” is the lower-bound for the bin and the second “#” is the upper-bound
for the bin.

2.3.8 Overlap Screen

This screen allows the user to build overlap clusters from the GTF sets using the Overlap
function of the Eval package. The upper listbox is used to select the GTF sets from
which to build the clusters. The lower listbox is used to select the overlap type, which
specifies how to build the clusters. The Get Overlap button will calculate overlap
clusters from the selected GTF sets using the selected overlap type and display the results
in a new window. The top of the new window shows the Label Key which maps labels to
GTF set names. Below the Label Key is a list of all possible cluster types and the number
of clusters of that type, and for each GTF set the percentage of objects from that set
which are in clusters of this type, and finally the percentage of total clusters which are of
this type. At the bottom of the screen is a Save button, which opens a Save File dialog
box which allows the results to be saved to a tab delimited text file in the same format as
the display window with all data separated by tabs, and a Close button which closes the
display window.

2.3.9 Dist Screen

This screen allows the user to build Eval distributions from one or more GTF sets. The
upper listbox is used to select one or more GTF sets from which the distributions will be
made. The lower listbox is used to select the type of distributions to generate. The Get
Distribution button generates one distribution for each selected GTF set for each selected
distribution type, and displays the next screen. On this screen the listbox is used to select
the GTF set distribution to view or save. Two textboxes allow the user to enter values
which set the upper-bound of the distribution and a bin size to use when reporting the
data. The lower-bound of any distribution is always zero. Any data point occurring
above the upper bound will be place in an “extra” bin just past the upper bound. A
checkbox allows the user to change the distribution to a cumulative distribution, where
the reported value for each bin is the size of the bin plus the sizes of all bins which are
located below the current bin. The Back button allows the user to return to the previous
screen to select new GTF sets and predictions to generate. This will cause any
previously calculated distributions to be discarded. The View button will display the
distribution in a new window using gnuplot and the Save button will display a Save File
dialog box which allows the user to save the distribution to a text file. If saved as a text
file the first line will be the distribution name followed by lines containing single tab
separated bin-size pairs. The bin has format “#-#” , where the “#” symbols are two
numbers specifying the lower- and upper-bound of the bin, and the size is a single
number representing how many objects fall into that bin. On the final line the bin has the
form “#+” where “#” is the upper bound of the maximum valued bin and its size
represents how many objects fall above the maximum bin.

 - 27 -

2.4 Eval Command Line Interfaces

The Eval package includes, for each main Eval function, a Perl script to run that function
from the command line. The command line interfaces to the Eval functions provide
quick, efficient access to each Eval function. If only a single analysis is being run, they
can save time by avoiding the overhead associated with loading and displaying the GUI.
Also, if many separate analyses need to be run, the command line interfaces allow them
to be run on a compute cluster. The command line interfaces do not require the Tk Perl
module.

2.4.1 evaluate_gtf.pl

This is the command line interface to the Evaluate function of the Eval package. It takes
a set of annotation GTF files and one or more sets of prediction GTF files, runs the
Evaluate function to compare all predictions to the annotation and outputs all statistics
calculated. It takes the following arguments:

Annotation A list file containing the annotation GTF set.
Prediction 1 A list file containing the first prediction GTF set.
Prediction 2 A li st file containing second next prediction GTF set.

Prediction 2 is optional and can be followed by any number of additional prediction GTF
sets to be compared to the annotation set.

The program has the following options:

-g The arguments are single GTF files rather than list files.
-v Turns verbose mode on.
-h Displays the usage statement and exits.

The output is sent to standard out and is in the same format as when saved to a text file
from the GUI.

2.4.2 get_general_stats.pl

This is the command line interface to the General Statistics function of the Eval package.
It takes one or more sets of GTF files and reports Eval General Stats about them. It takes
the following arguments:

GTF Set 1 A list file containing the first GTF set.
GTF Set 2 A list file containing the second GTF set.

 - 28 -

GTF Set 2 is optional and can be followed by any number of additional GTF sets for
which to calculate general statistics.

The program has the following options:

-g The arguments are single GTF files rather than list files.
-v Turns verbose mode on.
-h Displays the usage statement and exits.

The output is sent to standard out and is in the same format as when saved to a text file
from the GUI.

2.4.3 filter_gtfs.pl

This program is the command line interface to the Filter function of the Eval package. It
takes a filter file, a set of annotation GTF files, and one or more sets of prediction GTF
files, filters the predictions according to the filter file, and saves the results to files with
the same name as the input prediction files but ending in .filtered.list or .filtered.gtf. It
takes the following arguments:

Filter File A file specifying the filters to be used. See below for format.
Annotation A list file containing the annotation GTF set.
Prediction 1 A list file containing the first GTF set to be filtered.
Prediction 2 A list file containing the second GTF set to be filtered.

Prediction 2 is optional and can be followed by any number of additional GTF sets to be
filtered.

The program has the following options:

-f Prints all valid single filters to standard out and exits.
-g The arguments are single GTF files rather than list files.
-h Displays the usage statement and exits.

Each line of the Filter File should have a single character label, followed by a dash,
followed by a single filter, all separated by any amount of whitespace. As many single
filters as needed can be listed but all must have a different one character label. After all
filters have been listed, there should be an empty line (no empty lines are allowed prior to
this one), and then a line containing the Filter String. The Filter String is as described in
the section 2.3.6 above.

2.4.4 graph_gtfs.pl

This program is the command line interface to the Graph function of the Eval package. It
takes a graph file, an annotation set, and one or more prediction sets, creates the graphs

 - 29 -

specified in the graph file, and outputs the data to standard out. It takes the following
arguments:

Graph File A text file specifying the graphs to be made. See below for
format.

Annotation A list file containing the annotation GTF set.
Prediction 1 A list file containing the first prediction GTF set to be graphed.
Prediction 2 A list file containing the second prediction GTF set to be graphed.

Prediction 2 is optional and can be followed by any number of additional GTF sets to be
graphed. The Graph File is a text file with each line describing a graph to be created.
Each line has the format: “Y-Level::Y-Type::Y-Stat vs X-Split::X-Level”. Where the Y-
terms specify the statistic to be graphed and the X-terms specify how and at what level to
split the objects into bins.

The program has the following options:

-G Prints all possible values for the X-Split, Level, and y-axis to
standard out and exits.

-g The arguments are single GTF files rather than list files.
-r <Res File> A text file specifying the location and size of the bins on the x-

axis. See below for format.
-h Displays the usage statement and exits.

If no Res File is specified with the –r option, the users .evalrc file is used. If the user has
no .evalrc file then a default resolution is used.

The Res File specifies the bins for each split type. Each line has the X-Split type
followed by either “User” or “Uniform”. “User” is used to specify the size and location
of each bin, and should be followed by a series of increasing numbers, which are the
bounds of the bins. The first bin runs from the first number to the second, the second bin
runs from the second number to the third, and so on. “Uniform” is used to specify a list
of identically sized bins, and should be followed by three numbers. The first is the lower
bound of the lowest bin, the second is the size of each bin, and the third is the number of
bins. All fields in the Res File are separated by a single tab.

2.4.5 get_overlap_stats.pl

This is the command line interface to the Overlap function of the Eval package. It takes
one or more sets of GTF files, builds overlap clusters from them using the specified
Overlap Mode, and reports statistics on the number and composition of each cluster type.
It takes the following arguments:

GTF Set 1 A list file containing the first GTF set.
GTF Set 2 A list file containing the second GTF set.

 - 30 -

GTF Set 2 is optional and can be followed by any number of additional GTF sets from
which to build clusters.

The program has the following options:

-m <mode> Sets the overlap mode to mode, which must be a positive integer.
Valid options are listed in the usage statement and below. Default
is 1.

-g The arguments are single GTF files rather than list files.
-v Turns verbose mode on.
-h Displays the usage statement and exits.

Overlap Modes:

1 Transcript Exact Overlap
2 Transcript Exact Exon Overlap
3 Transcript 80p Region Overlap
4 Exon One Base Overlap
5 Exon 80p Overlap
6 Transcript Region Overlap
7 Exon Exact Overlap
8 Transcript Exact Intron Overlap
9 Transcript Coding Overlap
10 Exon 80p Both Overlap
11 Transcript 80p Both Region Overlap

Overlap Modes are described in the section 2.3.8 above.

The output is sent to standard out and is in the same format as described in section 2.3.8
above.

2.4.6 get_distribution.pl

This is the command line interface to the Distribution function of the Eval package. It
takes a distribution type, the upper bound of the values to be displayed, the size of the
bins which the data should be split into, and one or more sets of GTF files and outputs the
distribution of the given distribution type over the input GTF files. It takes the following
arguments:

Max Value The highest value to list in the distribution. All value above this
will be placed in a special bin, which goes from this value to
infinity.

Bin Size The size of the bins in which the data will be places.
GTF Set 1 A list file containing the first GTF set.

 - 31 -

GTF Set 2 A list file containing the second GTF set.

GTF Set 2 is optional and can be followed by any number of additional GTF sets for
which to calculate general statistics.

The program has the following options:

-d This displays a list of all valid distribution types
-m <mode> Set the distribution type to mode, which must be a positive integer.

Valid options are listed in the usage statement and below. Default
is 1.

-g The arguments are single GTF files rather than list files.
-h Displays the usage statement and exits.

Distribution Types:

1 Transcripts Per Gene
2 Transcript Length
3 Transcript Coding Length
4 Exons Per Transcript
5 Exon Length
6 Exon Score

The output is sent to standard out and is in the same format as when saved to a text file
from the GUI.

 - 32 -

Chapter 3: Code Level Documentation

3.1 Overview

This chapter describes the structure and inner workings of all source code for all
programs and libraries in the Eval package. A familiarity with the use of the programs
and libraries described in Chapter 2 is assumed.

All code was written in Perl for several reasons. First, Perl makes text processing very
easy and dealing with the GTF files requires a significant amount of text processing.
Second, many bioinformatics scripts and programs are written in Perl so by making the
libraries Perl libraries bioinformaticists can use the libraries’ data structures and functions
in their code. Also, the code is not exceptionally computationally intensive, so the speed
loss from using Perl instead of a faster, compiled language like C is not detrimental.
Three-way comparison of full human genome annotations, comprising over 80,000 genes
and 600,000 exons, takes less than 30 minutes on a 900MHz Pentium running Red Hat
Linux 7.1. Comparisons between two GTF sets containing thousands of genes each take
less than 30 seconds on the same machine. As such, the benefits of Perl outweighed
those of faster languages, and Perl was chosen as the implementation language.

3.1.1 Data Types

Below is a list of data types that variables can take. Throughout this document all data
types are listed in the same font. Although Perl does not have explicit data types, the
documentation provides them for all variables because the code requires that variables are
of a certain type and knowing the expected type of each variable makes the
documentation and code easier to understand. The most general, commonly used data
types are listed below. Other, more complex data types are introduced in the sections
which they are used.

array Perl array
aref Reference to an array
hash Perl hash
href Reference to a hash
int Integer value
float Floating point value
Boolean Boolean value*
fh Filehandle
fref Reference to a function
pvar Any Perl data type

* A Boolean is simply an int which takes
the value of 0 for false and is otherwise true.

 - 33 -

3.1.2 Naming Schemes

Variable names and function names are also displayed in distinctive fonts in order to
identify them and make the documentation easier to read.

Throughout the code a naming scheme is used to identify different types of variables and
functions. Constant values are listed in all capitals (CONSTANT), global variables are
listed with the first letter of each word capitalized (Global_Variable), local variables and
public functions are listed in all lowercase (local_var, public_function), and private
functions are preceded by an underscore and listed in all lowercase (_private_function).

3.2 GTF.pm

3.2.1 Overview

The GTF.pm library contains data structures used to store and provide easy access to a
GTF file. It defines four objects: GTF, GTF::Gene, GTF::Transcript, and
GTF::Feature. Since all code in the Eval package imports the entire GTF.pm library
the GTF:: is not needed so GTF::Gene, GTF::Transcript and GTF::Feature
objects will be referred to as Gene, Transcript and Feature objects. The GTF
object stores all data for a single GTF file, the Gene object stores all data for a single
gene, the Transcript object stores all data for a single transcript, and the Feature
object stores all data for a single GTF feature. A feature is a single line of the GTF file, a
transcript contains all features with the same <transcript_id> and a gene contains all
transcripts with the same <gene_id>.

The Gene object stores the <seqname>, <source>, <strand>, and <gene_id> GTF fields
as well as a list of all transcripts of this gene, stored as Transcript objects. The
Transcript objects stores the <transcript_id> as well as a list, for each GTF feature
type (exon, CDS, start_codon, and stop_codon) , of all Feature objects of that type in
this transcript. The Feature object stores the remaining GTF fields (<start>, <end>,
<score>, and <frame>) each of which is specific to a single feature.

The standard use of the GTF.pm library is to store in memory and provide easy access to
the data in GTF files. A GTF file is loaded into a GTF object by calling the constructor
with the appropriate arguments (see below). Lists of all genes, transcripts, or coding
exons from the file can then be retrieved as arrays of GTF.pm style objects (Gene,
Transcript, and Feature). Each of these GTF.pm style objects contains functions
to retrieve all data associated with them.

All objects defined in the GTF.pm library are Perl style objects. Perl style objects are
essentially just hash objects with fields for each of the object’s global variables and
functions. This is abstracted away when using the objects, but the objects’ code does
show these details. In the code of a Perl object, each function has a required first

 - 34 -

argument which is the object itself. So, in the code of GTF.pm, all non-constructor
functions take an addition argument, before all other arguments, which is the object the
function is being called on. This argument should never be given when using the
function as it is automatically added by Perl, and, as such, is left out of all function
descriptions below.

3.2.2 GTF Object

The basic function of the GTF object is to parse a GTF file, store all data associated with
it, and provide access to that data.

Global Variables

aref Genes A reference to an array of Gene objects
representing all genes in this GTF file.

aref Transcripts A reference to an array of Transcript
objects representing all transcripts in this GTF
file.

aref

CDS A reference to an array of Feature objects
representing all coding exons in this GTF file.

string Filename The name of the file from which this GTF was
loaded.

string Sequence The name of the file containing the genomic
sequence which this GTF annotates.

string Conseq The name of the conservation sequence file
corresponding to genomic sequence this GTF
annotates.

hash Total_Conseq A hash containing the number of match,
mismatch, and unaligned bases in the
conservation sequence for this GTF file. If no
conservation sequence is supplied to the
constructor all counts are set to -1.

hash Total_Seq A hash containing the number of A, C, G, T,
and N bases in the genomic sequence of this
GTF file. If no genomic sequence is supplied to
the constructor all counts are set to -1.

aref Warning_Skips A reference to an array of int values which
are error indices into the list returned by
get_error_messages. Each error indexed by
a value in this array will not be reported when
parsing the GTF file.

fh Tx A filehandle to which to write spliced
transcripts when parsing the GTF file.

 - 35 -

Boolean Fix_GTF A Boolean specifying whether or not to
attempt to fix non-format errors in the GTF file,
such as unannotated start or stop codons.
Format errors are automatically fixed when
possible.

Boolean Inframe_Stops A Boolean specifying whether or not to
output the <transcript_id> of any transcript
which contains in-frame stop codons prior to
the annotated stop codon.

Boolean Modified A Boolean specifying if the lists of genes,
transcripts, and coding exons need to be re-
sorted.

Constructor

GTF new(href info);

The info hash contains the following fields all of which are optional:

gtf_filename The filename for the GTF file to be loaded. If this field is
not given an empty GTF object is returned and all other
fields in info will have no effect.

seq_filename A file containing the genomic sequence which this GTF file
annotates. If given, each Feature object in the GTF will
know the number of A, C, G, T, and N bases in its sequence.
Also the GTF file is checked to ensure that the start and stop
codons and splice sites have correct sequence. This field has
no effect unless the gtf_filename field is given.

conseq_filename A file containing the conservation sequence corresponding
to the genomic sequence which this GTF file annotates. If
given, each Feature object created will know the number
of match, mismatch, and unaligned bases in its conservation
sequence. This field has no effect unless the gtf_filename
field is given.

tx_out_fh A filehandle to which to write all spliced transcripts. This
field has no effect unless the gtf_filename and seq_filename
fields are given.

warning_fh A filehandle to which all errors and warnings generated
while parsing the GTF file are written. If seq_filename is
given, errors and warnings found while checking the GTF
fi le against the sequence are also written to warning_fh.
This field has no effect unless the gtf_filename field is given.

The constructor parses the data in the info hash into global variable. If the gtf_filename
field is given it loads the specified file with the _parse_gtf function, otherwise it
returns an empty GTF object.

 - 36 -

Accessor Functions

aref genes()

This function returns a reference to an array of Gene objects (Genes), corresponding
to all genes in this GTF file, sorted in increasing order of their start value.

aref transcripts()

This function returns a reference to an array of Transcript objects (Transcripts),
corresponding to all transcripts of all genes in this GTF file, sorted in increasing order
of their start value.

aref cds()

This function returns a reference to an array of CDS type Feature objects (CDS),
corresponding to all coding exons in all transcripts in all genes in this GTF object,
sorted in increasing order of their start value.

string filename()

Returns the name of the GTF file that was loaded into this GTF object (Filename). If
this GTF was not loaded from a file it will return an empty string. The value
returned can be changed with the set_filename function.

href conservation_count()

Returns a reference to a hash containing fields “0”, “1”, and “2” (Total_Seq). Each
field contains the number of times that symbol appeared in the conservation sequence
of the genomic sequence which this GTF annotates. If the conservation sequence was
not loaded when the object was created all counts are returned as -1.

href sequence_count()

Returns a reference to a hash containing fields “A”, “C”, “G”, “T”, and “N”
(Total_Conseq). Each field contains the number of times that symbol appeared in the
genomic sequence which this GTF annotates. If the sequence was not loaded when the
object was created all counts are returned as -1.

void output_gtf_file(fh filehandle)

Writes the data stored in this GTF object to filehandle in GTF format. If filehandle is
not given the data is written to standard out.

void output_gff_file(fh filehandle)

Writes the data stored in this GTF object to filehandle in GFF format. If filehandle is
not given the data is written to standard out.

aref get_error_messages()

Returns a list of error messages used by the _parse_gtf function.

 - 37 -

Modifier Functions

void add_gene(Gene gene)

This function inserts gene into the list of Gene objects stored by this GTF object
(Genes).

void set_genes(aref genes)

genes A reference to an array of Gene objects
This sets the list of Gene objects stored by this GTF object (Genes) to genes. All genes
that were previously stored will be forgotten.

int remove_gene(string gene_id)

This function removes any gene whose <gene_id> is gene_id from the list of genes
stored by this GTF (Genes). It returns the number of genes it removed, which should
always be 0 or 1.

void set_filename(string filename)

This function sets the value returned by the filename function (Filename) to filename.

void offset(int offset)

This function changes the position of every feature of every transcript of every gene
stored by this GTF object by adding offset to it.

void reverse_complement(int length)

This function takes the length of the sequence this GTF file contains annotation for and
reverse complements everything in the file. The positive strand becomes the negative
strand and all positions, p, become length - p. It also updates the counts of each base
returned by the sequence_count function.

Internal Functions

void _parse_gtf(fh filehandle)

This parses the GTF file passed to the constructor, reports any errors or warnings to
filehandle and creates all Gene, Transcript, and Feature objects needed to store
the information in the file. The filehandle parameter is optional and if it is not given
errors and warnings are not reported.

void _rev_comp(string string)

string A string of A, C, G, T, and N characters
This function returns the reverse complement of string.

void _update()

This function re-sorts the lists of genes, transcripts, and features of this GTF object. It
is called before returning any of the lists but does nothing unless the Modified bit has
been set by the add_gene or set_genes functions. Only re-sorting the lists before

 - 38 -

they are returned saves time over keeping the lists in the correct order at all times since
the lists are stored as simple array objects and would otherwise need to be re-sorted
each time a new item it inserted into them..

3.2.3 Gene Object

This object stores all data for a single gene. Each gene object stores the <gene_id>,
<strand>, <source>, and <seqname> fields from the GTF specification. These data are
stored in the Gene object because they are the same for all transcripts of a given gene.
All data from other fields are stored in the Transcript or Feature object. Each
gene also contains a list of all transcripts which it contains.

Global Variables

string Id The <gene_id> of this gene.
string Seqname The <seqname> of this gene.
string Source The <source> of this gene.
string Strand The <strand> of this gene.
aref Transcripts A reference to an array of Transcript objects,

containing one object for each transcript of this gene.
pvar Tag The value stored by the set_tag function.

Constructor

Gene new(string gene_id, string seqname, string source, string strand)

The constructor arguments contain data which specify the field of the same name in the
GTF specification. The strand value must be “+”, “-“, or “.”. The other three can be
any string which contains no whitespace or “#” characters. The constructor returns a
Gene object containing no transcripts.

Accessor Functions

string id()

Returns the <gene_id> of this gene (Id).

string seqname()

Returns the <seqname> field for this gene (Seqname).

string source()

Returns the <source> field for this gene (Source).

int start()

Returns the lowest start value of any transcript of this gene.

 - 39 -

int stop()
Returns the highest stop value of any transcript of this gene.

float length()

Returns the length from the 5’ most coordinate of any of its transcripts to the 3’ most
coordinate of any of its transcripts.

string strand()

Returns the <strand> field of this gene (Strand).

aref transcripts()

Returns a reference to an array of Transcript objects (Transcripts) containing all
transcripts of this gene.

aref cds()

Returns a reference to an array of all CDS type Feature objects from any transcript
of this gene.

void output_gtf(fh filehandle)

Outputs each transcript of this gene in GTF format to filehandle.

void output_gff(fh filehandle)

Outputs each transcript of this gene in GFF format to filehandle.

Boolean equals(Gene compare)

Compares compare to this gene and returns true if compare and this gene have exactly
the same transcripts as each other and returns false otherwise. Transcripts are
compared using the equals function of the Transcript object. The <gene_id> and
<transcript_id> fields are ignored in this comparison.

float gc_percentage()

Returns the average GC percentage of all transcripts of this gene as determined by the
gc_percentage function of the Transcript object.

float match_percentage()

Returns the average match percentage of all transcripts of this gene gene as determined
by the match_percentage function of the Transcript object.

float mismatch_percentage()

Returns the average mismatch percentage of all transcripts of this gene gene as
determined by the mismatch_percentage function of the Transcript object.

 - 40 -

float unaligned_percentage()
Returns the average unaligned percentage of all transcripts of this gene gene as
determined by the unaligned_percentage function of the Transcript object.

pvar tag()

Returns the tag value (Tag) as set by the set_tag function. If no tag has been set, it
returns Perl’s undefined value.

Modifier Functions

void add_transcript(Transcript transcript)

Adds transcript to the list of transcripts of this gene (Transcripts). Also sets the Gene
field of transcript to be this Gene object.

void set_seqname(string seqname)

Sets the <seqname> field for this gene (Seqname) to seqname.

void set_source(string source)

Sets the <source> field for this gene (Source) to source.

void offset(int offset)

Moves the position of each transcript of this gene by offset bases.

void reverse_complement(int length)

Reverse complements each transcript in this gene given that the sequence the gene is on
has length length.

void set_tag(pvar tag)

Sets the tag value (Tag) to be returned by the tag function to tag.

3.2.4 Transcript Object

This object stores the data specific to a single transcript. The transcript must be part of a
Gene to retrieve its <strand>, <source>, <seqname>, or <gene_id>. Transcript
objects are not intended to be used alone and should always be part of a Gene object.
The Transcript object stores the <transcript_id> field and, for each of the four GTF
feature types (exon, CDS, start_codon, and stop_codon), an array of Feature objects,
each of which contains all features of that type of a transcript.

Global Variables

 - 41 -

string Id The <transcript_id> of this transcript.
aref Exons A reference to an array of exon type

Feature objects containing all exons of
this transcript.

aref CDS A reference to an array of CDS type
Feature objects containing all coding
exons of this transcript.

aref Introns A reference to an array of intron type
Feature objects containing all introns of
this transcript. The value of this variable is
not calculated until the it is requested by
calling the introns function.

aref Starts A reference to an array of start_codon
type Feature objects containing the start
codon of this transcript. The start codon is
normally contained in a single Feature
object but is potentially split into two or
three Feature objects.

aref Stops A reference to an array of stop_codon
type Feature objects containing the stop
codon of this transcript. The stop codon is
normally contained in a single Feature
object but is potentially split into two or
three Feature objects.

Gene Gene The Gene object to which this transcript
belongs.

int Start The lowest start value of any feature of this
transcript.

int Stop The highest stop value of any feature of this
transcript.

int Coding_Start The lowest start value of any coding exon
of this transcript.

int Coding_Stop The highest stop value of any coding exon
of this transcript.

int Coding_Length The sum of the lengths of all coding exons
of this transcript.

Boolean Modified A Boolean specifying if changes have
been made to any of the feature lists
indicating that they need to be re-sorted and
that some variables (Start, Stop,
Coding_Start, Coding_Stop,
Coding_Length, and Introns) must be
recalculated.

pvar Tag The value stored by the set_tag function.

 - 42 -

Constructor

Transcript new(string id)

The constructor takes a single argument which is the <transcript_id> for this transcript.
The <transcript_id> should be a string containing no whitespace, quote, or “#”
characters, as stated in the GTF specification. It returns a Transcript object
containing no features and belonging to no Gene.

Accessor Functions

aref exons()

Returns a reference to an array of all exon type Feature objects of this transcript
sorted by increasing start value (Exons).

aref cds()

Returns a reference to an array of all CDS type Feature objects of this transcript
sorted by increasing start value (CDS).

Feature initial_exon()

If this transcript has a start codon, this function returns the 5’ most coding exon of this
transcript, otherwise it returns 0.

Feature terminal_exon()

If this transcript has a stop codon, this function returns the 3’ most coding exon of this
transcript, otherwise it returns 0.

aref introns()

Returns a reference to an array of all intron type Feature objects sorted by
increasing start value (Introns). Each feature corresponds to an intron of this transcript.
Introns are not stored explicitly in the GTF file but the Transcript object calculates
them and builds a Feature object for each one.

aref start_codons()

Returns a reference to an array of all start_codon type Feature objects of this
transcript sorted by increasing start value (Starts).

aref stop_codons()

Returns a reference to an array of all stop_codon type Feature objects of this
transcript sorted by increasing start value (Stops).

string id()

Returns the <transcript_id> of this transcript (Id).

 - 43 -

string gene_id()
Returns the <gene_id> of the Gene object to which this transcript belongs. This value
is retrieved from the Gene object to which this transcript belongs.

Gene gene()

Returns the Gene object to which this transcript belongs (Gene).

string seqname()

Returns the GTF <seqname> field of this transcript. This value is retrieved from the
Gene object to which this transcript belongs.

string source()

Returns the GTF <source> field of this transcript. This value is retrieved from the
Gene object to which this transcript belongs.

int start()

Returns the lowest start value of any feature of this transcript (Start).

int stop()

Returns the highest stop value of any feature of this transcript (Stop).

int length()

Returns the length of the transcript from the start to the stop.

int coding_start()

Returns the lowest start value of any coding exon of this transcript (Coding_Start).

int coding_stop()

Returns the highest stop value of any coding exon of this transcript (Coding_Stop).

int coding_length()

Returns the sum of the length of all coding exons of this transcript (Coding_Length).

string strand()

Returns the GTF <strand> field of this transcript. This value is retrieved from the
Gene object to which this transcript belongs.

float score()

Returns the sum of the score of all non-intron features of this transcript. Since introns
are not explicitly stored in GTF they have no score.

void output_gtf(fh filehandle)

Outputs all features of this transcript to filehandle in GTF format.

 - 44 -

void output_gff(fh filehandle)
Outputs all features of this transcript to filehandle in GFF format.

Boolean equals(Transcript compare)

Compares compare to this transcript and returns true if this transcript and compare have
exactly the same features and returns false otherwise. Features are compared using the
equals function of the Feature object. The <transcript_id> and <gene_id> fields are
ignored in this comparison.

Transcript copy()

Returns a new Transcript object, with this object’s transcript id, containing copies
of all Feature objects of this transcript. The copy is not associated with any Gene
object and should be added to a Gene object before being used.

float gc_percentage()

Returns the GC percentage of the genomic sequence of all non-intron features of this
transcript.

float match_percentage()

Returns the match percentage of the conservation sequence of all non-intron features of
this transcript.

float mismatch_percentage()

Returns the mismatch percentage of the conservation sequence of all non-intron
features of this transcript.

float unaligned_percentage()

Returns the unaligned percentage of the conservation sequence of all non-intron
features of this transcript.

pvar tag()

Returns the tag value (Tag) as set using the set_tag function. If no tag has been set, it
returns Perl’s undefined value.

Modifier Functions

void add_feature(Feature feature)

Adds feature to the proper list (Exons, CDS, Start_Codons, or Stop_Codons) of
Feature objects stored by this Transcript.

int remove_exon(int position)

This function removes all exon type Feature objects stored by this Transcript
(Exons) whose start value is position and returns the number of features removed,
which should always be 0 or 1.

 - 45 -

int remove_cds(int position)
This function removes all CDS type Feature objects stored by this Transcript
(CDS) whose start value is position and returns the number of features removed, which
should always be 0 or 1.

void offset(int offset)

This function changes the position of every feature of this transcript by adding offset to
it.

void reverse_complement(int length)

This function reverse complements the transcript given that the length of the sequence
that the transcript is on is length. The positive strand becomes the negative strand and
all positions, p, become length - p. It also updates the counts of each base stored in
each Feature object of this transcript.

void set_tag(pvar tag)

Sets the value returned by the tag function (Tag) to tag.

Internal Functions

void _update()

This function sorts the lists of Feature objects, calculates the introns, start, stop,
coding start, coding stop, coding length, all of which are stored in global variables.
This is called before returning any list of Feature objects but only runs if some
modifier function has set the Modified bit since the last time _update was run. Only
running these calculations when they are needed saves time over recalculating them
each time a new feature is added.

aref _all_features()

This function returns a reference to an array of all non-intron Feature objects of
this transcript, sorted by increasing start coordinate.

void _set_gene(Gene gene)

This function sets gene as the Gene object associated with this transcript (Gene). This
function is used by the add_transcript function of the Gene object.

 - 46 -

3.2.5 Feature Object

This object stores the data specific to a single feature (line) of a GTF file. The <feature>,
<start>, <end>, <score>, and <frame> fields are stored in this object. Each Feature
should be part of a Transcript, which, in turn, should be part of a Gene. Feature
objects are not meant to be used outside of this hierarchy. The <transcript_id> field can
be retrieved from the Transcript which contains this feature and the <source>,
<seqname>, <strand>, and <gene_id> can be retrieved from the Gene which contains the
transcript which contains this feature.

Global Variables

string Type The <feature> field of this feature. This must be
“exon”, “CDS”, “start_codon”, “stop_codon”, or
“intron”. This is the <feature> field from the
GTF specification.

Int Start The <start> field of this feature.
Int End The <end> field of this feature.
float Score The <score> field of this feature.
string Frame The <frame> field of this feature.
string Subtype The subtype of this feature. This is only used for

CDS type features and should be “ Initial”,
“ Internal”, “Terminal”, or “Single”.

Boolean Seq A Boolean specifying if the counts of A, C, G,
T, and N bases in the genomic sequence of this
feature have been set.

Boolean Conseq A Boolean specifying if the counts of match,
mismatch, and unaligned bases in the
conservation sequence of this feature have been
set.

float GC The percentage of bases in the genomic sequence
of this feature which are G or C. This is
calculated and stored the first time
get_gc_percentage is called. A value of -1
indicates that the A, C, G, T, and N counts have
not yet been set.

float Match The percentage of match bases in the
conservation sequence of this feature. This is
calculated and stored the first time
get_match_percentage is called. A value of -1
indicates that the match, mismatch, and unaligned
counts have not yet been set.

 - 47 -

float Mismatch The percentage of mismatch bases in the
conservation sequence of this feature. This is
calculated and stored the first time
get_mismatch_percentage is called. A value
of -1 indicates that the match, mismatch, and
unaligned counts have not yet been set.

float Unaligned The percentage of unaligned bases in the
conservation sequence of this feature. This is
calculated and stored the first time
get_unaligned_percentage is called. A value
of -1 indicates that the match, mismatch, and
unaligned counts have not yet been set.

Int 0 The number of mismatch bases in this feature’s
conservation sequence. A value of -1 indicates
that this count has not yet been set.

Int 1 The number of match bases in this feature’s
conservation sequence. A value of -1 indicates
that this count has not yet been set.

Int 2 The number of unaligned bases in this feature’s
conservation sequence. A value of -1 indicates
that this count has not yet been set.

Int A The number of A bases in this feature’s genomic
sequence. A value of -1 indicates that this count
has not yet been set.

Int C The number of C bases in this feature’s genomic
sequence. A value of -1 indicates that this count
has not yet been set.

Int G The number of G bases in this feature’s genomic
sequence. A value of -1 indicates that this count
has not yet been set.

Int T The number of T bases in this feature’s genomic
sequence. A value of -1 indicates that this count
has not yet been set.

Int N The number of N bases in this feature’s genomic
sequence. A value of -1 indicates that this count
has not yet been set.

Pvar Tag The value stored by the set_tag function.

Constructor

Feature new(string type, int start, int end, float score, string frame)

The constructor takes five arguments which correspond to the field of the same name in
the GTF specification. The type argument must be one of “exon”, “CDS”,
“start_codon”, “stop_codon”, or “intron”. The start and end arguments are positive
integers corresponding to the boundaries of the feature and start must be the lower of
the two. The frame value must be “0”, “1”, “2”, or “.”. The constructor returns a

 - 48 -

Feature object that does not belong to any Transcript. The user should use the
add_feature function of the Transcript object to add this feature to a transcript.

Accessor Functions

string type()

Returns the <feature> field for this object (Type).

string subtype()

This function is only valid for CDS type Feature objects. It returns either “ Initial” ,
“ Internal” , “Terminal”, or “Single” depending on the subtype of the CDS (Subtype),
which is determined by the transcript which contains this feature. If this is the only
CDS in this transcript, then “Single” is returned. If the transcript has a start codon and
multiple exons and this is the most 5’ CDS, “Initial” is returned, and if the transcript
has a stop codon and multiple exons and this is the most 3’ CDS, “Terminal” is
returned. In all other cases “Internal” is returned.

string transcript_id()

Returns the <transcript_id> of the transcript to which this feature belongs.

Transcript transcript()

Returns the Transcript object to which this feature belongs (Transcript).

string gene_id()

Returns the <gene_id> of the Gene object which contains this feature.

Gene gene()

Returns the Gene object which contains this feature.

string seqname()

Returns the <seqname> field for this feature. This value is retrieved from the gene
which contains this feature.

string source()

Returns the <source> field for this feature. This value is retrieved from the gene which
contains this feature.

int start()

Returns the <start> field of this feature (Start).

int stop()

Returns the <end> field of this feature (End).

 - 49 -

int end()
Same as the stop function above (End).

int length()

Returns the length of this feature from <start> to <end>.

float score()

Returns the <score> field of this feature (Score).

string frame()

Returns the <frame> field of this feature (Frame).

string strand()

Returns the <strand> field of this feature. This value is retrieved from the gene which
contains this feature.

Boolean equals(Feature compare)

Compares compare to this feature and returns true if this feature and compare have the
same <start>, <stop>, <stand>, and <feature> fields and returns false otherwise.

Feature copy()

Returns a new Feature object with the same <start>, <end>, <score>, <frame>,
<feature>, base counts and conservation counts as this object.

void output_gtf(fh filehandle)

Outputs a single line describing this feature in GTF format to filehandle.

void output_gff(fh filehandle)

Outputs a single line describing this feature in GFF format to filehandle.

float gc_percentage()

Returns the GC percentage of the genomic sequence of this feature (GC).

float match_percentage()

Returns the match percentage of the conservation sequence of this feature (Match).

float mismatch_percentage()

Returns the mismatch percentage of the conservation sequence of this feature
(Mismatch).

float unaligned_percentage()

Returns the unaligned percentage of the conservation sequence of this feature
(Unaligned).

 - 50 -

int get_a_count()
Returns the number of A bases in the genomic sequence of this feature (A).

int get_c_count()

Returns the number of C bases in the genomic sequence of this feature (C).

int get_g_count()

Returns the number of G bases in the genomic sequence of this feature (G).

int get_t_count()

Returns the number of T bases in the genomic sequence of this feature (T).

int get_n_count()

Returns the number of N bases in the genomic sequence of this feature (N).

int get_match_count()

Returns the number of match bases in the conservation sequence of this feature (1).

int get_mismatch_count()

Returns the number of mismatch bases in the conservation sequence of this feature (0).

int get_unaligned_count()

Returns the number of unaligned bases in the conservation sequence of this feature (2).

pvar tag()

Returns the tag value (Tag) as set using the set_tag function. If no tag has been set, it
returns Perl’s undefined value.

Modifier Functions

void set_subtype(string subtype)

Sets the subtype of this feature (Subtype) to subtype.

void set_start(int start)

Sets the <start> of this feature (Start) to start.

void set_stop(int stop)

Sets the <end> of this feature (Stop) to stop.

void set_frame(string frame)

Sets the <frame> of this feature (Frame) to frame.

void set_bases(int a_count, int c_count, int g_count, int t_count, int n_count)

Sets the counts of each base in this feature’s genomic sequence (A, C, G, T, N).

 - 51 -

void set_conseq(int match_count, int mismatch_count, int unaligned_count)
Sets the counts of each conservation base in this feature’s conservation sequence (0, 1,
2).

void offset(int offset)

This function adds offset to the <start> and <send> fields (Start and End) of this
feature.

void reverse_complement(int length)

This function takes the length of the sequence that this feature is on and reverse
complements the feature. The positive strand becomes the negative strand and all
positions, p, become length - p. It also updates the counts of each base stored by this
feautre.

void set_tag(pvar tag)

Sets the value to be returned by the tag function (Tag) to tag.

3.3 Eval.pm

The Eval.pm library provides a set of functions to compute statistics on a set of GTF
objects or compare two or more sets of GTF objects to each other. There are six main
functions: Evaluate, General Statistics, Graph, Filter, Overlap, and Distribution. Each is
described below. Most use a common set of statistics which are also described below.

All main Eval functions take GTF_set objects as parameters. A GTF_set is a data
structure used to store a GTF set. Each GTF file in the set is loaded into a GTF object
and stored in an array in the same position as the file occurs in the GTF set. A
reference to this array is called a GTF_set object. GTF_set objects may contain
only a single GTF object.

Several of the functions of the Eval library take, as input, objects that can be any of the
following: Gene, Transcript, or Feature. A parameter of this type will be called a
GTF_obj object.

3.3.1 Definition of Statistics

Most top-level functions use the same set of statistics and the same subroutines for GTF
comparison and analysis. This allows new statistics to be added by making only one
change to the initialization of the data structures and adding code to the appropriate
comparison function to compute the new statistic. Statistics are organized into three
levels, which from most general to most specific are: Level, Type, and Stat. A detailed
description of how the statistics are organized into Levels, Types, and Stats as well as a
description of all individual Levels, Types, and Stats can be found in Chapter 2.

 - 52 -

All statistics computed are stored in a stats_struct, which is a hash with a field for
each Level, each of which points to a hash containing fields for each Type of that Level,
which in turn point to hash objects with fields for each Stat for this Level, each of which
contains the value for this Level/Type/Stat combination.

Top-level Statistics Functions

array get_level_list()

Returns an array of string values containing the name of each Level.

hash get_list_struct()

Returns a hash with a field for each Level, indexed by the Levels name, and a field
“Level” which points to an array containing the name of each Levels as a string.
Each Level’s field points to a hash with two fields: “Type”, which is a list of all
Types of this Level, and ”Stat” which is a list of all Stats for this Level. This function
is used to get a suggested ordering for reporting the statistics from a stats_struct.

hash get_general_list_struct()

Returns a hash similar to that of get_list_struct, but the “Stat” fields contain only
General Stats.

stats_struct get_stats_struct()

Returns a stats_struct with all Stats set to 0.

Gene Level Statistics Functions

array get_gene_type_list()

Returns an array of all Gene Level Types.

array get_gene_stat_list()

Returns an array of all Gene Level Stats.

array get_gene_general_stat_list()

Returns an array of all Gene Level General Stats.

array get_gene_stat_type_list()

Returns an array of all Gene Level Comparison Stat Types.

array get_gene_substat_list()

Returns an array of all Gene Level Substats.

 - 53 -

hash _get_gene_type_hash()
Returns a hash containing a field for each Gene Level Type. Each field is initialized
to 0.

hash _get_gene_stat_hash()

Returns a hash containing a field for each Gene Level Stat. Each field is initialized to
0.

hash _get_gene_type_struct()

Returns a hash containing a field for each Gene Level Type. Each field points to a
hash containing the results of _get_gene_stat_hash().

Transcript Level Statistics Functions

array get_transcript_type_list()

Returns an array of all Transcript Level Types.

array get_transcript_stat_list()

Returns an array of all Transcript Level Stats.

array get_transcript_general_stat_list()

Returns an array of all Transcript Level General Stats.

array get_transcript_stat_type_list()

Returns an array of all Transcript Level Comparison Stat Types.

array get_transcript_substat_list()

Returns an array of all Transcript Level Substats.

hash _get_transcript_type_hash()

Returns a hash containing a field for each Transcript Level Type. Each field is
initialized to 0.

hash _get_transcript_stat_hash()

Returns a hash containing a field for each Transcript Level Stat. Each field is
initialized to 0.

hash _get_transcript_type_struct()

Returns a hash containing a field for each Transcript Level Type. Each field points to
a hash containing the results of _get_transcript_stat_hash().

 - 54 -

Exon Level Statistics Functions

array get_exon_type_list()

Returns an array of all Exon Level Types.

array get_exon_stat_list()

Returns an array of all Exon Level Stats.

array get_exon_general_stat_list()

Returns an array of all Exon Level General Stats.

array get_exon_stat_type_list()

Returns an array of all Exon Level Comparison Stat Types.

array get_exon_substat_list()

Returns an array of all Exon Level Substats.

hash _get_exon_type_hash()

Returns a hash containing a field for each Exon Level Type. Each field is initialized
to 0.

hash _get_exon_stat_hash()

Returns a hash containing a field for each Exon Level Stat. Each field is initialized to
0.

hash _get_exon_type_struct()

Returns a hash containing a field for each Exon Level Type. Each field points to a
hash containing the results of _get_exon_stat_hash().

Nuc Level Statistics Functions

array get_nuc_type_list()

Returns an array of all Nuc Level Types.

array get_nuc_stat_list()

Returns an array of all Nuc Level Stats.

array get_nuc_general_stat_list()

Returns an array of all Nuc Level General Stats.

array get_nuc_stat_type_list()

Returns an array of all Nuc Level Comparison Stat Types.

 - 55 -

array get_nuc_substat_list()
Returns an array of all Nuc Level Substats.

hash _get_nuc_type_hash()

Returns a hash containing a field for each Nuc Level Type. Each field is initialized to
0.

hash _get_nuc_stat_hash()

Returns a hash containing a field for each Nuc Level Stat. Each field is initialized to
0.

hash _get_nuc_type_struct()

Returns a hash containing a field for each Nuc Level Type. Each field points to a hash
containing the results of _get_nuc_stat_hash();

Signal Level Statistics Functions

array get_signal_type_list()

Returns an array of all Signal Level Types.

array get_signal_stat_list()

Returns an array of all Signal Level Stats.

array get_signal_general_stat_list()

Returns an array of all Signal Level General Stats.

array get_signal_stat_type_list()

Returns an array of all Signal Level Comparison Stat Types.

array get_signal_substat_list()

Returns an array of all Signal Level Substats.

hash _get_signal_type_hash()

Returns a hash containing a field for each Signal Level Type. Each field is initialized
to 0.

hash _get_signal_stat_hash()

Returns a hash containing a field for each Signal Level Stat. Each field is initialized
to 0.

hash _get_signal_type_struct()

Returns a hash containing a field for each Signal Level Type. Each field points to a
hash containing the results of _get_signal_stat_hash().

 - 56 -

3.3.2 Evaluate Functions

array evaluate(GTF_set ann, aref preds, Boolean verbose)

ann A GTF_set object containing the annotation GTF set.
pred An array of GTF_set objects containing prediction GTF sets.
verbose Sets the verbose mode on or off. This is an optional argument with

default value false.
Returns an array of stats_struct objects where the first item corresponds to the
annotation set, ann, and the rest correspond to the prediction sets in pred and occur in
the same order as in the input.

The Evaluation function is used to compare one or more prediction GTF_set objects
to an annotation GTF_set object. The first GTF in the annotation set is compared to
the first GTF in each prediction set, the second GTF in the annotation set is compared
to the second GTF in each prediction set, and so on. Statistics are calculated for each
comparison and totaled, for each prediction list, over each GTF in that list.
Comparisons are done using the compare_gene_lists function, which, in turn, uses
the _compare_object_list function. Annotation statistics are generated using the
_get_stats function described in the section 3.3.3 below.

List Comparison Functions

void compare_gene_lists(aref anns, aref preds, stats_struct data)

anns A reference to an array of annotation Gene objects. This array
must be sorted by increasing start position.

preds A reference to an array of prediction Gene objects. This array
must be sorted by increasing start position.

data The results of the comparison are returned in data, which should have
all value initialized to zero before to being passed to this function.

This function compares the gene set anns to the gene set preds and increments the
appropriate counts in data by calling the _compare_object_list function with the
appropriate function pointers.

void compare_tx_lists(aref anns, aref preds, stats_struct data)

anns A reference to an array of annotation Transcript objects. This
array must be sorted by increasing start position.

preds A reference to an array of prediction Transcript objects. This
array must be sorted by increasing start position.

data The results of the comparison are returned in data, which should have
all value initialized to zero before to being passed to this function.

This function compares the transcript set anns to the transcript set preds and increments
the appropriate counts in data by calling the _compare_object_list function with the
appropriate function pointers.

 - 57 -

void compare_exon_lists(aref anns, aref preds, stats_struct data)
anns A reference to an array of annotation Feature objects. This

array must be sorted by increasing start position.
preds A reference to an array of prediction Feature objects. This

array must be sorted by increasing start position.
data The results of the comparison are returned in data, which should have

all value initialized to zero before to being passed to this function.
This function compares the exon set anns to the exon set preds and increments the
appropriate counts in data by calling the _compare_object_list function with the
appropriate function pointers.

void _compare_object_lists(aref anns, aref preds, stats_struct data, fref
init_func, fref clear_func, fref compare_func, fref collect_func, fref
ann_collect_func)

anns A reference to an array of annotation GTF_obj objects.
This array must be sorted by increasing start position.

Preds A reference to an array of prediction GTF_obj objects.
This array must be sorted by increasing start position.

Data A reference to a stats_struct in which the results of
the comparison are stored.

init_func A reference to a function which takes a single GTF_obj,
from anns or preds, and initializes its tag.

clear_func A reference to a function which takes a single GTF_obj,
from anns or preds, and clears its tag (frees the memory).

compare_func A reference to a function which takes a GTF_obj from
anns and a GTF_obj from preds (in that order), compares
the objects and stores the results of the comparison in the
objects’ tags.

collect_func A reference to a function which takes a single GTF_obj
from preds with a filled-in tag and a stats_struct and
copies the information from the tag into the
stats_struct.

ann_collect_func A reference to a function which takes a single GTF_obj
from anns with a filled-in tag and a stats_struct and
copies the information from the tag into the
stats_struct.

This is the main function used to compare sets of GTF_obj objects. It moves through
the sorted list of prediction objects, comparing each to all annotation objects which
overlap it. The first time it compares any object it initializes that objects tag value
using the init_func parameter. Once the object will no longer be used in any
comparison (for prediction objects this means it has moved on to comparisons
involving the next prediction object and for annotation objects this means that the
current prediction object begins after the annotation object ends) the data from the
objects tag is used to increment the values in data using the collect_func and

 - 58 -

ann_collect_func parameters, and tag value is cleared with the clear_func, freeing the
memory.

The tag is used to temporarily store the data from comparisons involving the object
which the tag is on. This is done because if a single object matches in some way to
more than one other object it should only be counted as a single match, so the results of
comparisons must be stored until all comparisons of this object are complete. For
example if a single prediction object overlaps two annotation objects it should be
counted as one prediction overlap, and two annotation overlaps. If the fact that the
prediction object already overlapped an annotation is not stored, then each overlap will
be counted and a potential exists to have a prediction overlap count that is greater than
the total number of predictions.

A valid tag is one of the format returned by the appropriate get_exon_tag,
get_transcript_tag, or get_gene_tag function for the Level of object it is on. A
filled in tag is a valid tag with all values set to the appropriate value for the object
which it is on.

Object Comparison Functions

void _compare_genes(Gene a_gene, Gene p_gene)

This function is used to compare two Gene objects. This compares all overlapping
transcripts of the genes using the _compare_txs function. The results of the
comparisons are stored in the objects’ tags, so each of the objects’ tags must have been
properly initialized using the _init_gene_tag function prior to calling
_compare_genes.

void _compare_txs(Transcript a_tx, Transcript p_tx)

This function is used to compare two Transcript objects. It compares all
overlapping coding exons and all overlapping introns of the two Transcript objects
using the _compare_features function. The results of the comparisons are stored in
the objects’ tags. The tag values for the Gene objects that a_tx and p_tx belong to are
also updated. The tags of p_tx and a_tx as well as those of the Gene objects they
belong to must have been initialized, using _init_tx_tag and _init_gene_tag
respectively, prior to calling _compare_txs.

void _compare_features(Feature a_feature, Feature p_feature)

This function is used to compare two CDS or intron type Feature objects. The
results of the comparison are stored in the objects’ tags. The tags must have been
initialized using the _init_exon_tag or _init_intron_tag function prior to calling
_compare_features.

 - 59 -

Initialization and Clean up Functions

hash _get_gene_tag()

Returns a tag data structure for a Gene object with all fields initialized to 0.

hash _get_tx_tag()

Returns a tag data structure for a Transcript object with all fields initialized to 0.

hash _get_exon_tag()

Returns a tag data structure for a CDS or intron type Feature object with all fields
initialized to 0.

void _init_gene_tag(Gene gene)

Sets gene’s tag value to the hash returned by _get_gene_tag. Any Gene Level Type
fields that this gene qualifies for are set. It also initializes the tag of all transcripts of
this gene by calling the _init_tx_tag function on each of them.

void _init_tx_tag(Transcript tx)

Sets tx’s tag value to the hash returned by _get_tx_tag. Any Transcript Level Type
fields that this transcript qualifies for are set. It also initializes the tag of all CDS or
intron type Feature objects stored by this transcript by calling the _init_exon_tag or
_init_introns_tag function on each of them.

void _init_exon_tag(Feature cds)

Sets cds’s tag value to the hash returned by _get_exon_tag. Any Exon Level Type
field that this exon qualifies for are set.

void _init_intron_tag(Feature intron)

Sets intron’s tag value to the hash returned by _get_exon_tag. The Intron Type
field is set, and all other Exon Level Types are not.

void _clear_gene_tag(Gene gene)

Clears gene’s tag field.

void _clear_tx_tag(Transcript tx)

Clears tx’s tag field.

void _clear_exon_tag(Feature exon)

Clears exon’s tag field.

void _clear_intron_tag(Feature intron)

Clears intron’s tag field.

 - 60 -

Data Collection Functions

void _collect_gene_stats(aref genes, stats_struct data)

genes A reference to an array of Gene objects with valid filled in tags.
data A stats_struct in which to store a summary of the data in the

tags of the objects in genes.
Increments the appropriate Gene Level prediction counts in data for each matched
value in the tag of each Gene object in genes.

void _collect_ann_gene_stats(aref genes, stats_struct data)

genes A reference to an array of Gene objects with valid filled in tags.
data A stats_struct in which to store a summary of the data in the

tags of the objects in genes.
Increments the appropriate Gene Level annotation counts in data for each matched
value in the tag of each Gene object in genes.

void _collect_tx_stats(aref txs, stats_struct data)

txs A reference to an array of Transcript objects with valid filled in
tags.

data A stats_struct in which to store a summary of the data in the
tags of the objects in genes.

Increments the appropriate Transcript Level prediction counts in data for each matched
value in the tag of each Transcript object in txs.

void _collect_ann_tx_stats(aref txs, stats_struct data)

txs A reference to an array of Transcript objects with valid filled in
tags.

data A stats_struct in which to store a summary of the data in the
tags of the objects in genes.

Increments the appropriate Transcript Level annotation counts in data for each matched
value in the tag of each Transcript object in txs.

void _collect_exon_stats(aref exons, stats_struct data)

exons A reference to an array of Feature objects with valid filled in
tags.

data A stats_struct in which to store a summary of the data in the
tags of the objects in exons.

Increments the appropriate Exon Level prediction counts in data for each matched
value in the tag of each Feature object in exons.

void _collect_ann_exon_stats(aref exons, stats_struct data)

exons A reference to an array of Feature objects with valid filled in
tags.

 - 61 -

data A stats_struct in which to store a summary of the data in the
tags of the objects in exons.

Increments the appropriate Exon Level annotation counts in data for each matched
value in the tag of each Feature object in exons.

Statistic Calculation Functions

The following functions are used to calculate and store all Stats whose value is
determined completely by the value of other Stats, such as Sensitivity, Specificity, and
Average Stats, each of which depend on a Count and the total number of objects. The
Stats these functions calculate are stored in data and the Stats which they depend upon
must have been filled in in data prior to calling these functions.

void _calculate_stats(stats_struct data)

This calculates the Stats which depend on other Stats at each Level by calling each of
the following five functions.

void _calculate_gene_stats(stats_struct data)

This calculates the Stats at the Gene Level which depend on other Stats.

void _calculate_tx_stats(stats_struct data)

This calculates the Stats at the Transcript Level which depend on other Stats.

void _calculate_exon_stats(stats_struct data)

This calculates the Stats at the Exon Level which depend on other Stats.

void _calculate_nuc_stats(stats_struct data)

This calculates the Stats at the Nuc Level which depend on other Stats.

void _calculate_signal_stats(stats_struct data)

This calculates the Stats at the Signal Level which depend on other Stats.

3.3.3 General Statistics Functions

stats_struct get_statistics (aref gtfs, Boolean verbose)

gtfs A reference to an array of GTF_set objects for which to gather
general statistics.

verbose Sets the verbose mode on or off. This is an optional argument with
default value false.

This function returns a stats_struct with all General Stats filled in according to
the data in gtfs. It works by simply making a gene set for each GTF_set, calling the
_get_stats function on it, and using the _calculate_stats function to fill in General
Stats which depend on other General Stats.

 - 62 -

stats_struct _get_stats(aref genes)
genes A reference to an array of gene sets, where a gene set is an

array of Gene objects.
Returns a stats_struct with all General Stat counts set according to the data in
genes. It works by calling the _get_gene_list_stats function on each array of
Gene objects in genes.

void _get_gene_list_stats(aref genes, stats_struct data)

genes A reference to an array of Gene objects.
data A stats_struct in which the results of this function are

returned.
Increments all General Stat counts in data for each gene in genes. It works by calling
the _get_gene_stats function on each Gene in genes.

void _get_gene_stats(Gene gene, stats_struct data)

Increments all Gene Level General Stat counts in data for gene. The _get_tx_stats
function is called on each transcript of this gene to collect their stats.

void _get_tx_stats(Transcript tx, stats_struct data)

Increments all Transcript Level and some Signal Level (start and stop codon) General
Stat counts in data for tx. The _get_exon_stats function is called on each CDS
feature and intron feature of this transcript to collect their stats.

void _get_exon_stats(Feature cds, stats_struct data)

Increments all Exon Level, all Nuc Level, and some Signal Level (splice site) General
Stat counts in data according to cds.

3.3.4 Filter Funcitons

array filter_predictions(GTF_set ann, aref preds, filter filter, Boolean
verbose)

ann A reference to an annotation GTF_set object.
preds A reference to an array of prediction GTF_set objects to filter.
filter A filter object (see below).
verbose A Boolean value to set the verbose mode on or off. This is an

optional argument with default value false.
This function takes an annotation GTF set and list of prediction GTF sets, compares the
prediction sets to the annotation set, and creates, for each prediction set, a new GTF set
containing only objects from the prediction set which pass the filter in filter. The
filtered GTF sets are built using the _filter_gene_list function. This function returns
an array of GTF_set objects, each one corresponding to the prediction GTF set at
the same position in preds. A filter object is a reference to an array of size three.
The first position is one of the following: “Check”, “Not”, “And”, or “Or”. If the value
at index 0 is “Check”, then the values at the next two positions correspond to the Level

 - 63 -

and Type of this filter in that order. Only objects at this Level of this Type will pass
this filter. The Level and Type values for a “Check” filter must come from the
get_filter_types function. If the first position is “And” or “Or” then the next two
positions contain filter objects which are joined with a logical and or logical or (set
intersection or set union) when checking to see if an object passes this filter. If the first
position is “Not” then the next position contains another filter object which an
object must fail to pass this filter.

hash get_filter_types()

Returns a hash listing possible filters. This just returns the results of
_get_filter_type_struct.

hash _get_filter_type_struct()

Returns a hash containing all possible filters in a similar format to the get_list_struct
function, described in the 3.3.1 section above. It has a field, “Levels”, which lists each
Level at which fi lters can be applied. Each Level also has a field, indexed by the
Level’s name, which is a list of possible filter types for this Level. Possible filter types
include all Types and Comparison Stat Types for this Level.

void _filter_gene_lists(aref anns, aref preds, aref new_genes, filter filter)

anns A reference to an array of Gene objects used as annotation.
preds A reference to an array of Gene objects to be filtered
new_genes A reference to an array in which Gene objects from preds

which pass filter will be placed.
filter A filter object specifying how to filter the GTF sets.

This function moves though the annotation and prediction lists in the same way as the
_compare_object_lists function, making comparisons between any overlapping
annotation and prediction genes. Once all comparisons have been made for a given
prediction gene (and stored in that object’s tag) the _filter_gene function is used to see
if all or any part of the prediction gene passes filter and should be added to the
new_genes list.

Gene _filter_gene(Gene gene, filter filter)
This function returns a new Gene object containing the portion of this gene that passes
filter. The gene, as well of all of its transcripts and all of their CDS and intron
features, should have a valid, filled in tag of the form returned by get_gene_tag,
_get_tx_tag, or _get_exon_tag before calling this function. The _check_filter
function is used to check if gene passes filter. If the gene explicitly passes the filter
then a copy of gene is returned. If not then _filter_tx is called on each transcript and
any transcript which passes the filter get placed in a new Gene object and returned. If
the gene explicitly fails the filter or all transcripts fail the filter completely (_filter_tx
returns 0) then 0 is returned.

 - 64 -

Transcript _filter_tx(Transcript tx, filter filter)
This function returns a new Transcript object containing any part of tx which
passed filter. The transcript, as well as all of its CDS and intron features, should have a
valid, filled in tag of the form returned by get_tx_tag or _get_exon_tag before being
passed to this function. The _check_filter function is used to check if tx passes filter.
If the transcript explicitly passes the filter then a copy of tx is returned. If not
_filter_exon is called on each coding exon of the transcript and any that pass are placed
in a new Transcript object which is returned. If the transcript explicitly fails the
filter or no CDS features pass the filter, then 0 is returned.

Feature _filter_exon(Feature exon, filter filter)

This function returns a new Feature, which is a copy of exon, if exon passes the filter
and 0 otherwise. exon should have a valid, filled in tag of the form returned by
get_exon_tag before being passed to this function. The _check_filter function is
used to check if exon passes filter.

int _check_filter(href info, string level, filter filter)

info A reference to a hash containing a tag value of the form returned by
get_gene_tag, get_tx_tag, or get_exon_tag.

level A string specifying what Level of object info came from.
filter A filter object to check info against.

Returns -1 if the tag failed the filter, 0 if the tag neither failed nor passed the filter (the
filter, or at least some part of it, is applied to a lower Level object than this), and 1 if the
tag passed the filter. This function works recursively to get the value for the whole
filter in cases when “And”, “Or”, or “Not” is used. Although the values returned from
a call to _check_filter will always be -1, 0, or 1, its internal calls of itself may also
return 2. A value of 2 means that this filter is for a Level which should already have
been checked (since filter_gene_lists moves from gene to transcript to exon when
checking the filter) and the filter was not failed at that level.

3.3.5 Graph Functions

array make_graphs(GTF_set ann, aref preds, aref graphs, href resolution,
Boolean verbose)

ann A reference to the annotation GTF_set object.
preds A reference to array of prediction GTF_set objects.
graphs A reference to an array of graph types to be calculated. Graph

types are specified by an X-Split and a Level. Each element of the
array is a hash with two fields, “split” and “level”, containing
string values for the X-Split and Level respectively.

 - 65 -

resolution A reference to a hash containing a key for each X-Split type used
in graphs. Each key points to another hash which specifies the
bins to use for graphs of this X-Split type. This hash can contain
only one of two possible keys. The first possible key is “user” and
should point to an array of bins. Each bin is a hash with a
“start” and “stop” field each of which should contain a float
value. The array of bins should be sorted by “start” field. Bins
cannot overlap and there should be no gaps (regions covered by no
bin) between the “start” of the first bin and the “stop” of the last
bin. The second possible key is “uniform” and should point to a
hash with “min” , “max” , “count” , “size” keys. “min” and “max”
are the minimum and maximum values of the X-Split type for any
bin. Any data which fall outside this range is ignored. “count” is
the number of bins and “size” is the size of each bin. All four do
not need to be specified. If any are skipped they are inferred from
the others or from the data as needed. If all fur values are
specified but are inconsistent the “count” value is ignored. Only
one of the top-level keys, “user” and “uniform”, should be given.
If both are given the “uniform” key is ignored. A reference to a
hash of the type pointed to by the X-Split keys of resolution is
called a resolution object.

verbose A Boolean value to set the verbose mode on or off. This is an
optional argument with default value 0.

For each X-Split/Level pair in graphs, each prediction set in preds is split into bins
according to resolution and an each bin is compared to the annotation set using the
appropriate one of the compare_gene_sets, compare_transcript_sets, or
compare_exon_sets functions. The return value is an array with an index for each
prediction set, each of which contains the data for each X-Split/Level combination that
was passed to the function in the graphs parameter. The format is:

return_val[pred]{ split}{ level}[bin] = data

Where pred is an index into the preds array to specify from which prediction set this
data was created. split and level are hash fields specifying the X-Split/Level of the
graph whose data they contain. bin is an index into each bin created, and data is a
hash containing three fields:

min The lower-bound for this bin.
max The upper-bound for this bin.
data An Eval report for this bin versus the whole annotation.

array get_graph_x_types()

Returns an array of string values representing all possible X-Splits.

 - 66 -

hash get_graph_y_types()
Returns a hash in the same format as the return value of the get_list_struct function
which specifies all Stats which can be graphed.

array get_graph_x_levels()

Returns an array of string values representing all possible Levels at which the data
can be split.

array _split_preds_for_graph(GTF_set gtfs, aref bins, string split, string
level)

gtf A GTF_set object to split into bins.
bins A reference to an array of bin objects, each of which is a hash

containing three fields “min”, “max”, and “data” which have types
float, float and stats_struct respectively. The bins should
be sorted from low to high.

split A string specifying by which property the GTF set should be split.
level A string specifying at which Level the GTF set should be split.

Returns an array of GTF_set objects, each corresponding to a bin in bins,
containing the level Level objects from gtfs which belong in that bin. Bins in the
array returned are in the same order as the bins in the bins parameter.

array _get_graph_bins(resolution resolution, string split)

Returns an array of bin objects as specified by resolution. Each bin object is a hash
with two fields, “min” and “max”, both float values, which specify the lower- and
upper-bound of the bin respectively. The split parameter is used only for error
reporting.

float _get_x_val(GTF_obj obj, string type)

Returns the type value of obj, where type is a valid X-Split type (i.e. if type is GC% and
obj is an exon it returns the GC% of that exon).

hash _get_graph_x_val_map()

Returns a hash mapping each X-Split type to a function that takes a GTF_obj and
returns the value of the object for this X-Split.

float _get_gc_percent(GTF_obj obj)

Returns obj’s GC percentage.

float _get_match_percent(GTF_obj obj)

Returns obj’s conservation match percentage.

float _get_mismatch_percent(GTF_obj obj)

Returns obj’s conservation mismatch percentage.

 - 67 -

float _get_unaligned_percent(GTF_obj obj)
Returns obj’s conservation unaligned percentage.

int _get_length(GTF_obj obj)

Returns obj’s length

3.3.6 Overlap Functions

hash get_overlap_statistics(aref preds, string type, Boolean verbose)

preds A reference to an array of GTF_set objects.
type A string specifying the type of overlap clusters to build.
verbose Sets the verbose mode on or off. This is an optional argument with

default value false.
This function is used to build overlap clusters (see Chapter 2) from one of more sets of
GTF objects. The type of overlap clusters to build is specified by type, which must be
one of the string values in the array returned by the get_overlap_mode_list
function. Clusters are built using the _get_overlap_stats function. The number of
clusters of each cluster type as well as the number of objects from each input set in
clusters of each cluster type are counted and returned. The results are returned as a
hash in exactly the format described in the _get_overlap_stats function.

array get_overlap_labels(int count)

Returns an array containing the first count letters of the alphabet. This array can
be used as a mapping between the GTF sets passed to get_overlap_statistics and their
labels in the value returned by that function.

array get_overlap_mode_list()

Returns an array of string values, where each string is a valid overlap type for
the argument type to get_overlap_statistics.

Specific Overlap Type Functions

Each of the following functions takes as input a reference to an array of GTF_set
objects and computes overlap clusters from the GTF_set objects by calling
_get_overlap_stats with arguments which cause it to build overlap clusters using a
specific overlap type. The value returned is a hash containing counts of each cluster
type and is described in detail in the _get_overlap_stats section. The overlap type used
to build the clusters is described for each function. All types of overlap require that the
two objects are on the same strand.

hash get_tx_exact_overlap_statistics(aref preds)

Builds overlap clusters of transcripts which are exactly the same (identical start_codon,
stop_codon, and CDS features).

 - 68 -

hash get_tx_80p_overlap_statistics(aref preds)
Builds overlap clusters of transcripts whose regions overlap by at least 80% of the
length of the longer region.

hash get_tx_80p_small_overlap_statistics(aref preds)

Builds overlap clusters of transcripts whose regions overlap by at least 80% of the
length of the shorter region.

hash get_tx_coding_overlap_statistics(aref preds)

Builds overlap clusters of transcripts whose coding regions (CDS features) overlap each
other by at least one base pair.

hash get_tx_1bp_overlap_statistics(aref preds)
Builds overlap clusters of transcripts whose regions overlap by at least one base pair.

hash get_tx_exact_exon_overlap_statistics(aref preds)

Builds overlap clusters of transcripts which match at least one exon exactly.

hash get_tx_exact_intron_overlap_statistics(aref preds)

Builds overlap clusters of transcripts which match at least one intron exactly.

hash get_exon_exact_overlap_statistics(aref preds)

Builds overlap clusters of exons which are exactly the same (<start>, <end>, and
<strand> are identical).

hash get_exon_80p_both_overlap_statistics(aref preds)
Builds overlap clusters of exons which overlap each other by at least 80% of the length
of the longer exon.

hash get_exon_80p_smaller_overlap_statistics(aref preds)

Builds overlap clusters of exons which overlap each other by at least 80% of the length
of the shorter exon.

hash get_exon_1bp_overlap_statistics(aref preds)

Builds overlap clusters of exons which overlap each other by at least one base pair.

Cluster Building Functions

hash _get_overlap_stats(aref preds, fref select_func, fref compare_func)

preds A reference to an array of GTF_set objects.
select_func A reference to a function which takes a single GTF objects and

returns an array of objects out of which cluster will be built.
compare_func A reference to a function which takes two objects of the type

in the array returned by select_func and returns 1 if they
belong in the same cluster and 0 otherwise.

 - 69 -

The return value for this function is a hash containing a field for each cluster type
which contains data about the clusters of that type. Each prediction set in preds is
given a one character upper-case alphabetic label. Each cluster type is given a label
which is simply the alphabetic order concatenation of the labels of all prediction sets
whose objects this cluster type contains. In the return value each cluster type label
points to a hash with a “total” field and fields for each GTF set in preds, indexed by
each sets label. The “total” field contains the total number of clusters of this type and
the GTF set label fields contain the number of objects in clusters of this type which
come from the GTF set with that label. A reference to a hash of the format described
for the return value of this function will be referred to as a cluster_count object.

A cluster is stored internally as a hash with three fields: “list”, “start”, and “stop”.
The “start” field holds the lowest coordinate of any object in the cluster. The “stop”
fields hold the highest coordinate of any object in the cluster. The “list” field holds a
reference to an array of objects (of the type returned by select_func) which are in this
cluster. Each object in the “list” array should have its tag value set to the label of the
GTF set to which it belongs. A reference to a hash of this type will be referred to as a
cluster object.

void _collect_cluster(cluster cluster, cluster_count cluster_count)

This function increments the counts in cluster_count according to the objects in cluster.

void _combine_clusters(cluster c1, cluster c2)

Takes all the objects in the c2 cluster and places them in c1. Also updates the “start”
and “stop” fields of c1 as necessary. The c2 cluster is set to be an empty cluster.

hash _get_overlap_map()

Returns a hash which has a field for each valid overlap type each of which points to
the function which will compute overlap clusters for that type.

aref _get_genes(GTF pred)

Returns a reference to an array of all Gene objects in pred.

aref _get_txs(GTF pred)

Returns a reference to an array of all Transcript objects in pred.

aref _get_exons(GTF pred)

Returns a reference to an array of all CDS type Feature objects in pred.

 - 70 -

Overlap Test Functions

Each of the overlap test functions described below will return false anytime the two
objects are not on the same strand.

Boolean _exact_bounds_overlap_func(GTF_obj a, GTF_obj b)

Returns true if the start and the stop of each object is the same and returns false
otherwise.

Boolean _80p_both_overlap_func(GTF_obj a, GTF_obj b)

Returns true if the region from the start to the stop of each object overlaps by at least
80% of the length of the shorter object and returns false otherwise.

Boolean _80p_smaller_overlap_func(GTF_obj a, GTF_obj b)

Returns true if the region from the start to the stop of each object overlaps by at least
80% of the length of the longer of the two objects and returns false otherwise.

Boolean _1bp_overlap_func(GTF_obj a, GTF_obj b)

Returns true if the regions from the start to the stop of each object overlap by at least
one base pair and returns false otherwise.

Boolean _tx_exact_overlap_func(Transcript a, Transcript b)

Returns true if the two transcripts are identical (start and stop codons and all coding
exons are the same) and false otherwise.

Boolean _tx_coding_overlap_func(Transcript a, Transcript b)

Returns true if at least one CDS feature in a overlaps a CDS feature in b and returns
false otherwise.

Boolean _tx_exact_exon_overlap_func(Transcript a, Transcript b)

Returns true if the two transcripts share at least one exon (same start and stop) and false
otherwise.

Boolean _tx_exact_intron_overlap_func(Transcript a, Transcript b)

Returns true if the two transcripts share at least one intron (same start and stop) and
false otherwise.

3.3.7 Distribution functions

array get_distribution(aref gtfs, aref distributions, Boolean verbose)

Gtfs A reference to an array of GTF_set objects.
distributions A reference to an array of string values, each of which is a

distribution to calculate.
Verbose A Boolean value to set the verbose mode on or off. This is an

optional argument with default value 0.

 - 71 -

This function computes each distribution in distributions on each GTF set in gtfs and
returns an array containing a hash for each GTF set in gtfs. Each hash has a field
for all distributions in distributions, each of which points to a hash containing fields
for every value an object in this prediction set takes in this distribution. Each value
field points to an integer which is the number of objects which have this value. For
example for an Exons_Per_Transcript distribution the field “4” would contain the
number of transcripts which have 4 exons. A hash is used because some distributions
have rare outliers which are very large. In the case of a length distribution 99% of the
data could have length less than 2000 but a small number could have length between
2000 and 40000. If an array were used to store this data 40000 bins would be needed
to store all the data, but many of them would be empty (have value 0). By using a
hash the memory needed to store as well as the time required to iterate through most
distributions is decreased.

hash get_distribution_type_hash()

Returns a hash with a field for each distribution type returned by
get_distribution_type_list. All fields are initialized to 0.

array get_distribution_type_list()

Returns an array of string values containing all valid distribution types.

void _get_distribution(aref gtfs, aref data, fref type_func, href dist_funcs)

gtfs A reference to an array of GTF_set objects.
data A reference to an array of the form returned by get_distribution

described above.
type_func A reference to a function which takes a single GTF object and

returns an array of the objects from which distributions will be
made.

dist_funcs A reference to a hash of fref objects, each of which
corresponds to a distribution to calculate and takes a single object
of the type in the array returned by the type_func function and
returns the value of that object for a this distribution. The
functions are indexed in the hash by the distributions name.

This function calculates all distributions which are keys to dist_funcs for all GTF sets in
gtfs and places the results in data. This function is used by the get_distribution
function to calculate all distributions.

hash _get_distribution_functions()

Returns a mapping between the distribution type, as a string, and a function to get
the appropriate value for this distribution from a GTF_obj object.

int _get_exons_per(Transcript tx)

Returns the number of coding exons tx contains.

 - 72 -

int _get_tx_length(Transcript tx)
Returns the total length of tx.

int _get_coding_length(Transcript tx)

Returns the coding length of tx.

int _get_exon_length(Feature exon)

Returns the length of exon.

float _get_exon_score(Feature exon)

Returns the score of exon.

3.3.8 General Functions and Variables

Global Variables

alphabet An array of letters of the alphabet. This is used to label overlap
sets.

Functions

void print_time(int total_time)

Reports to standard error that the calculations have been completed in total_time
seconds. Time is reported in days, hours, minutes, and seconds. This function is used
by all top-level Eval functions when in verbose mode.

3.4 eval.pl

3.4.1 Overview

The GUI is organized around the six top-level function of the Eval package. Each
function has a frame or set of frames which is used to specify the input to and display the
output from the function. When the function uses a set of frames, each frame contains
buttons which allow the user to move forward and backward through the set. When
started, the GUI initializes each of these frame sets and displays the Evaluate functions
frame. Across the top of the screen a bar of buttons allows the user to switch from one
frame set to another. When one of these buttons is pressed the currently displayed frame
set is replaced with the newly selected frame set. All actual computation is done in the
functions of the Eval.pm library.

The GUI uses the Tk Perl module for creating windows and display widgets such as
listboxes and buttons. This module was chosen for creating the GUI because it is easy to
use and allows construction of complex graphical user interfaces. A basic understanding

 - 73 -

of the Tk module is very helpful but not necessary for understanding or modifying the
code.

Data Types

listbox A Tk::Listbox object.
frame A Tk::Frame object.
ann_listbox A listbox object which contains the names of all

currently loaded GTF sets. Each ann_listbox is
automatically updated when a GTF set is loaded or
unloaded. Only one GTF set may be selected at a time
in a given ann_listbox.

pred_listbox A listbox object which contains the names of all
currently loaded GTF sets. Each pred_listbox is
automatically updated when a GTF set is loaded or
unloaded. Multiple GTF sets may be selected at once
in a given pred_listbox.

3.4.2 Constants

int MIN_WIDTH The minimum width the main Eval
window can have.

int MIN_HEIGHT The minimum height the main Eval
window can have.

int EVAL_FRAME_NUM The value of Current_Frame when the
Evaluate frame is displayed.

int STATS_FRAME_NUM The value of Current_Frame when the
GenStats frame is displayed.

int FILTER_FRAME_NUM The value of Current_Frame when the
Filter frame is displayed.

int GRAPH_FRAME_NUM The value of Current_Frame when the
Graph frame is displayed.

int OVERLAP_FRAME_NUM The value of Current_Frame when the
Overlap frame is displayed.

int DIST_FRAME_NUM The value of Current_Frame when the
Dist frame is displayed.

string HOME The current user’s home directory.
string ACTIVE_COLOR The foreground color for items which

are enabled.
string INACTIVE_COLOR The foreground color for items which

are disabled.
array GENERAL_SKIP A list of statistics that should not be

displayed when showing only General
Stats.

 - 74 -

int MIN_DISP_LEN The minimum length in characters of a
Stat name when it is output to a text file.
If the statistic name is shorter than this
value it will be padded with spaces to
make it the correct length.

int MIN_VAL_LEN The minimum length in characters of a
Stat value when output to a text file. If
the value’s length as a string is shorter
than this value it will be padded with
spaces to make it the correct length.

string USER The current user’s name.
array ALPHABET An array of letters of the alphabet.

3.4.3 Global Variables

int X_Pos X-position of the main window.
int Y_Pos Y-position of the main window.
string Options_File Full path and filename of the user’s options file.
array Main_Buttons An array of buttons (one for each top-level

Eval function) which are used to select the frame
to display.

array Main_Frames An array of the top-level frames (one for each
top-level Eval function).

array Ann_GTF_Lbs An array of all ann_listbox objects.
array Pred_GTF_Lbs An array of all pred_listbox objects.
array GTF_Objs An array of GTF_set objects containing all

GTF sets which are loaded in memory.
array Obj_Names An array of string values containing the

names of the GTF sets which are loaded in
memory.

int Current_Frame The index in Main_Frames of the currently
displayed top-level frame.

Boolean Verbose Boolean specifying whether or not “Verbose”
mode is turned on.

Boolean Really_Verbose Boolean specifying whether of not “Really
Verbose” mode is turned on.

Boolean No_Seq A Boolean indicating whether sequence files (if
available) should be loaded for each GTF. If
true, the sequence files will not be loaded.

Boolean List_Mode A Boolean indicating whether inputs are
expected to be list files or GTF files. A value of
true means list files are expected.

 - 75 -

string Precision A C style printf format string indicating the
level of precision with which to report data (the
number of decimal places to report).

string Cwd Current working directory. Default for loading
and saving dialog boxes.

hash General A hash of every Stat and Type for each Level.
Each field contains a Boolean which is true if
the Type or Stat should be displayed when
reporting General Statistics and false if it should
not.

hash Display A hash of every Stat and Type for each Level.
Each field contains is a Boolean which is true if
the Type or Stat should be displayed when
reporting statistics and false if it should not.

hash Graph_Resolution A hash to store the resolution for each graph
split type.

3.4.4 Functions

Initialization Functions

void init_hashes()

Initializes the General and Display variables.

void initialize_frames()

Calls each top-level frame’s initialize function.

void switch_frames(int new_frame)

Displays the top-level frame specified by new_frame, which is an index into the
Main_Frames array.

General Functions

array make_ann_pred_frame(frame frame)

Creates a new frame inside frame, which contains an ann_listbox and a
pred_listbox. This function is used by frame initialization functions to get
listboxes which hold all currently loaded GTF sets. By using this function the code of
each frame does not need to keep track of which GTF sets are currently loaded. The
newly created frame is not displayed to the screen (using the pack, grid, or place
function of the frame object). The return value is an array containing the new
frame, the ann_listbox and the pred_listbox in that order.

 - 76 -

array make_pred_frame(frame frame)
Similar to the make_ann_pred_frame function except the newly created frame
contains only a pred_listbox. The return value is an array containing the new
frame and the pred_listbox in that order.

void adjust_data_precision(aref data)

data A reference to the output from Eval::evaluate or
Eval::get_general_statistics

This function adjusts all Stat values in data to have the precision (number of decimal
places) specified by Precision.

void message_func(string msg)

Displays a message box containing msg.

void error_func(string error_msg, int fatal)

Displays a message box containing error_msg. The second argument is optional and if
it is given and is not 0 the program exits with status fatal.

string get_tmp_file()

Returns the name of a temporary file which should not be in use by any other process.

Menu Functions

void open_func()

Displays a Open File dialog box which allows the user to select a new GTF or list file
to load into memory. Files are loaded with the load_func function.

void load_func(string filename)

Takes filename of a GTF or list file, loads the file into memory, and adds it to all
annotation and prediction listboxes using the create_gtf_object and add_to_display
functions.

GTF create_gtf_object(string file, string seq, string conseq)

Takes a GTF filename and optional sequence and conservation sequence filenames,
loads the file as a GTF object and returns the GTF object. If either sequence is given
they are loaded into the GTF object unless No_Seq is true.

void add_to_display(string name, GTF_set gtf)

gtf is added to all prediction and annotation lisboxes under the name name. gtf and
name are also added to GTF_Objs and Obj_Names respectively.

void save_func()

Opens a window which allows the user to select a GTF set to save to disk.

 - 77 -

void _save_pred_func(GTF_set object)
Takes a GTF_set and opens a Save File dialog which allows the user to save object as
either a GTF file or list file depending on whether there are one or more than one GTF
objects in object. When object contains more than one GTF object it is saved as a list
file and all individual GTF objects in the list are saved as GTF files in the same
directory with the name “filename.#.gtf” where “filename” is the name the list file was
saved to and “#” is the position of each GTF in the list.

void remove_func()

Opens a window which allows the user to select GTF sets to unload.

void _remove_preds_func(pred_listbox plb)

Removes all GTF sets selected in plb from all ann_listbox and pred_listbox
objects.

void help_func()

Display the eval help system.

void about_func()

Displays an about dialog box containing general information about eval.pl.

void exit_func()

Exits the program.

Options Functions

void load_options_file()

Loads the program options from the user’s .evalrc file. Options include which Types
and Stats to display for each Level and the graph resolutions to use for each X-Split.

void save_options_file()

Writes the currently loaded options into the user’s .evalrc file

void edit_options_func()

Loads a window that allows the user to edit the options and save them to his .evalrc file.

Eval Frame Functions

void initialize_eval_frame()

Initializes the display widgets of the Evaluate frame.

void eval_run_func(ann_listbox alb, pred_listbox plb)

Runs Eval::evaulate using the GTF set selected in alb as the annotation set and the
GTF sets selected in plb as the prediction sets, and displays the results in a new window
on the screen using the display_eval_results function.

 - 78 -

void display_eval_results(aref data, aref names)

data A reference to an array of Eval reports, as returned by
Eval::evaluate

names A reference to an array of string values containing the names of
the annotation and prediction GTF setsfrom which data was created.
The annotation set name is listed first followed by the prediction set
names in the same order as their reports appear in data.

Displays the reports in data in a new window.

void fill_general_stats_frame(aref data, aref names, frame frame)

data A reference to an array of Eval reports, as returned by
Eval::evaluate

names A reference to an array of string values containing the names of
the annotation and prediction GTF sets from which data was created.
The annotation set name is listed first followed by the prediction set
names in the same order as their reports appear in data.

frame A frame object in which the General Stats of data should be
displayed.

Displays the General Stats from data in frame.

void save_eval_output(aref data, aref names)

data A reference to an array of Eval reports, as returned by
Eval::evaluate

names A reference to an array of string values containing the names of
the annotation and prediction GTF sets from which data was created.
The annotation set name is listed first followed by the prediction set
names in the same order as their reports appear in data.

Opens a Save File dialog box which allows the user to save the Eval reports in data to a
text file.

string pad_string(string string, int min_len)

Appends string with spaces until it has length min_len.

string get_general_stats_text(aref data, aref names)

data A reference to an array of Eval reports, as returned by
Eval::evaluate

names A reference to an array of string values containing the names of
the annotation and prediction GTF sets from which data was created.
The annotation set name is listed first followed by the prediction set
names in the same order as their reports appear in data.

Returns a string, containing all General Stats in data, to be written to a file.

 - 79 -

GenStats Frame Functions

void initialize_stats_frame()

Initializes the display widgets of the GenStats Frame.

void get_stats_run_func(pred_listbox plb)

Runs Eval::get_statistics on the GTF sets selected in plb and displays the results in a
new window using the display_stats_func function.

void display_stats_func(aref data, aref names)

data A reference to an array of Eval reports, as returned by
Eval::get_statistics

names A reference to an array of string values containing the names of
the annotation and prediction GTF sets from which data was created.
The annotation set name is listed first followed by the prediction set
names in the same order as their reports appear in data.

The reports are displayed in a new window using the fill_general_stats_frame
function.

void save_stats_output(aref data, aref names)

data A reference to an array of Eval reports, as returned by
Eval::get_statistics

names A reference to an array of string values containing the names of
the annotation and prediction GTF sets from which data was created.
The annotation set name is listed first followed by the prediction set
names in the same order as their reports appear in data.

Opens a Save File dialog box which allows the user to save the Eval reports in data to a
text file.

Filter Frame Functions

void initialize_filter_frame()

Initializes the display widgets of the Filter frame.

Boolean parse_filter_string(href filter_keys, string filter_text, aref filter)

filter_keys A reference to a hash which maps the single character
alphabetic labels used in filter_string to filter they represent.

filter_string A Filter String as described in the section 2.3.6 above.
filter An array reference which the filter object will be returned

in.
The filter_text string is parsed, using the parse_filter_helper function, and placed a
filter object, filter, to be passed to the Eval::filter_predictions function. If
filter_string is successfully parsed into filter, the function returns 1, otherwise it returns
0.

 - 80 -

Boolean parse_filter_helper(href keys, string text, filter filter)
keys A reference to a hash which maps each single character alphabetic

label used in text to the filter it represents.
text A Filter String as described in the section 2.3.6 above.
filter An array reference which the filter object will be returned in.

This function recursively calls itself to parse text into filter using keys. If text is not a
valid Filter String the function returns 0. If text is successfully parsed into filter, the
function returns 1.

void filter_run_func(ann_listbox alb, pred_listbox plb, filter filter,
string name)

The prediction GTF sets selected by plb are filtered against the GTF set selected in alb
according to filter using the Eval::filter_predictions function, and the newly created
GTF sets and placed in all annotation and prediction listboxes under the name of the
prediction GTF set they were created from but having name inserted into the title.

Graph Frame Functions

void initialize_graph_frame()

Initializes the display widgets of the Graph frame.

hash get_default_graph_resolution()

Returns the default graph resolution which is used when no resolution is specified in
the user’s .evalrc file or the user does not have a .evalrc file.

array graph_run_func(ann_listbox alb, pred_listbox plb, listbox glb,
resolution resolution)

Items in glb should have the format “Level::X-Split” where “Level” is the Level at
which the data should be split and “X-Split” is the property by which the data should be
split. The items in glb are then converted into the format expected by the graphs
parameter of Eval::make_graphs. The annotation GTF set selected in alb and all
prediction GTF sets selected in plb along with the graphs parameter and the resolution
argument to this function are passed to Eval::make_graphs and the results of that
function are returned.

void save_graph_func(ann_listbox alb, pred_listbox pslb, listbox glb,
aref graphs, string level, string type, string stat)

This function opens a Save File dialog box which allows the user to save a graph to a
text file. The graph which is saved is specified by the inputs to this function. The three
listbox arguments are the same as in the graph_run_func function above. The
graphs argument is the output from Eval::make_graphs. The three string
arguments specify the Level, Type, and Stat being graphed.

 - 81 -

void display_graph_func(ann_listbox alb, pred_listbox pslb, listbox glb,
aref graphs, string level, string type, string stat)

Takes the same inputs as the save_graph_func function but displays the graph in a
new window using the gnuplot_bar_bin function instead of saving it to a file.

void gnuplot_bar_bin(aref graph, string title, string x_label, string
y_label)

graph A reference to an array of hash objects. Each hash represents a
single bar to be graphed and contains three fields: “min” , “max” , and
“count” . “min” and “max” are the lower- and upper-x-axis bounds of
the bar and “count” is the height of the bar on the y-axis.

title The title of the graph.
x_label The label for the x-axis of the graph.
y_label The label for the y-axis of the graph.

This function displays the graph specified by graph with the labels specified by the
string arguments in a new window using gnuplot.

Overlap Statistics Frame Functions

void initialize_overlap_frame()

Initializes the display widgets of the Overlap frame.

void overlap_stats_run_func(pred_listbox plb, listbox slb)

The items in the slb listbox are string values which represent overlap types and
exactly one of which should be selected. Using the overlap type in selected slb and all
prediction GTF sets selected in plb the overlap statistics are calculated using the
Eval::get_overlap_statistics function. The results are displayed in a new window
using the display_overlap_stats_func function.

void display_overlap_stats_func(href data, aref pred_names, string
overlap_type)

data A reference to the output from Eval::get_overlap_statistics
function.

pred_names A reference to an array of string values containing the
names of the prediction GTF sets from which data was
created.

overlap_type The type of overlap used to create data.
This function displays the overlap statistics in data in a new window.

void save_overlap_stats_output(href data, aref pred_names, string
overlap_type)

data A reference to the output from Eval::get_overlap_statistics
function.

 - 82 -

pred_names A reference to an array of string values containing the
names of the prediction GTF sets from which data was
created.

overlap_type The type of overlap used to create data.
This function opens a Save File dialog box which allows the user to save the overlap
statistics in data to a text file.

string get_overlap_stats_text(href data, aref pred_names, string
overlap_type)

data A reference to the output from Eval::get_overlap_statistics
function.

pred_names A reference to an array of string values containing the
names of the prediction GTF sets from which data was
created.

overlap_type The type of overlap used to create data.
This function returns a text version of the overlap statistics in data.

Dist Frame Functions

void initialize_distribution_frame()

Initializes the display widgets of the Distribution frame.

void save_distribution_data(string gtf_name, string dist_name, aref data)

gtf_name The name of the GTF set from which this distribution was made.
dist_name The type of distribution used to make data.
data The output of bin_distribution_data.

This function opens a Save File dialog box and allows the user to save the distribution
in data to a text file.

void graph_distribution_data(string gtf_name, string dist_name, aref data)

gtf_name The name of the GTF set from which this distribution was made.
dist_name The type of distribution used to make data.
data The output of bin_distribution_data.

This function displays the distribution in data in a new window using the
gnuplot_bar_bin function.

aref bin_distribution_data(aref data, float max, float res, Boolean cum)

data A reference to the output from Eval::get_distribution.
max The maximum upper bound for any bin.
res The size of the bins that data should be placed in.
cum If true then the distributions made should be cumulative. In a

cumulative distribution the returned value for any bin is the
number of objects which fall in it plus the sum of the number of
objects in all bins below it.

 - 83 -

This function takes the distribution in data and moves it into bins of size res, going
from 0 to max. All data in data which would fall into bins above max are placed into a
single bin that covers everything from max to infinity. The bins are of the form
expected by the gnuplot_bar_bin function. A reference to a array of the bins, sorted
from low to high x-axis position, is returned.

3.5 Eval Scripts

The following scripts are command line interfaces to the functions of the Eval.pm library.
Most functions from the Eval scripts are not listed below. If a function is not listed it is
identical to the function of the same name in the section 3.4 above.

3.5.1 evaluate_gtf.pl

string print_eval_output()

This function is the same as the save_eval_output function of eval.pl but it returns the
text generated instead of opening a Save File dialog box and saving the text to a file.

3.5.2 get_general_stats.pl

<no new functions>

3.5.3 filter_gtfs.pl

void print_filter(filter filter)

Takes a filter object and displays it as a text string to standard out. This function is
used for debugging purposes.

void print_filter_types()

Prints all valid filters to standard out.

void check_filter(string level, string type)

Takes two string values containing the Level and Type of a filter and exits with an
error if they do not specify a valid filter.

void error_func(string message)

Writes message to standard error and exits.

array load_func(string filename)

Opens filename, which should be a GTF or list file and loads the file into a GTF_Set
object which it then returns.

 - 84 -

3.5.4 graph_gtfs.pl

void parse_resolution_text(href res, array text)

Each value in text is a line of text from a .evalrc file specifying the graph resolutions.
The resolutions are parsed out of the text and placed in res, which is used as the
resolution argument to the Eval::make_graphs function.

void print_graph_types()

Prints all valid X-Splits and Level/Type/Stat combinations for building Eval graphs to
standard out.

array load_func(string filename)

Same as load_func in filter_gtfs.pl

3.5.5 get_overlap_stats.pl

<no new functions>

3.5.6 get_distribution.pl

array load_func(string filename)

Same as load_func()in filter_gtfs.pl

 - 85 -

Chapter 4: Future Work

The Eval project is, for the most, part complete. Several small upgrades to the main
functions as well as small reorganization of the code are planned.

The most general way to extend the Eval package is the addition of new Stats. If a
situation arises where a new Stat is required it can easily be added to the existing code, as
can a new Type. Adding a new Level would require significantly more work but could
be done. The need for a new Level is not anticipated because the current set of Levels
covers all types of information which can be stored in a GTF file.

The GTF validator currently outputs a list of all errors and warnings encountered when
loading a GTF file. No distinction is made between an error and a warning so the user
must decide the severity of the problem and whether the problem must be fixed or is
acceptable to leave as it is. This should be changed so that a distinction between errors
and warnings is made. Errors should be problems which must be fixed before the file can
be used because they could never occur in real genes, such as in-frame stop codons.
Warnings should be messages that alert the user to a situation which is abnormal but may
still be correct, such as non-standard splice sites.

The graph function resolution should be extended to be more versatile. Currently there is
no way to center the graph on the data. The resolution should be able to be generically
specified around the minimum and maximum values in the data. The lack of this feature
is a problem because graphs, even at a fixed X-Split, may have widely differing ranges of
values on the x-axis. For example, an exon length graph will cover a much small and
much lower range of x-axis values than a transcript length graph. If the resolution could
be specified to have some specific number of bins and go from the minimum value to the
maximum value, varying ranges would not be a problem.

Some of the code in eval.pl is repeated in the Eval scripts. This code belongs in some
library, so that any changes that need to be made do not require altering the code in
multiple places. The Eval.pm library contains code for comparing sets of GTF files so it
is not the appropriate place for the repeated code, which is user interface functions, such
as loading GTF files, parsing command line arguments, and displaying Eval function
results in different ways. A new user interface library should be created to contain this
code.

 - 86 -

Appendix A: GTF File Format Specification

GTF stands for gene transfer format. This borrows from the GFF file format [1], but has
additional structure that warrants a separate definition and format name.

The structure is similar to GFF, so the fields are:

<seqname><source><feature><start><end><score><strand><frame><attributes>

Here is a simple example with 3 translated exons. The order of the rows is not important.

Hs-Ch1 Twinscan CDS 380 401 . + 0 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 501 650 . + 2 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 700 707 . + 2 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan start_codon 380 382 . + 0 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan stop_codon 708 710 . + 0 gene_id "1"; transcript_id "1.a";

The whitespace in this example is provided only for readability. In GTF, fields must be
separated by a single TAB and no other whitespace.

<seqname>
The <seqname> field contains the name of the sequence which this gene is on.

<source>
The <source> field should be a unique label indicating where the annotations came from
– typically the name of either a prediction program or a public database.

<feature>
The <feature> field can take four values: "CDS", "start_codon", "stop_codon", and
"exon". The “CDS” feature represents the coding sequence starting with the first
translated codon and proceeding to the last translated codon. Unlike Genbank annotation,
the stop codon is not included in the “CDS” feature for the terminal exon. The “exon”
feature is used to annotate all exons, including non-coding exons. The “start_codon” and
“stop_codon” features should have a total length of three for any transcript but may be
split onto more than one line in the rare case where an intron falls inside the codon.

<start> <end>
Integer start and end coordinates of the feature relative to the beginning of the sequence
named in <seqname>. <start> must be less than or equal to <end>. Sequence numbering
starts at 1. Values of <start> and <end> must fall inside the sequence on which this
feature resides.

<score>
The <score> field is used to store some score for the feature. This can be any numerical
value, or can be left out and replaced with a period.

 - 87 -

<frame>
A value of 0 indicates that the first whole codon of the reading frame is located at 5'-most
base. 1 means that there is one extra base before the first whole codon and 2 means that
there are two extra bases before the first whole codon. Note that the frame is not the
length of the CDS mod 3. If the strand is '-', then the first base of the region is value of
<end>, because the corresponding coding region will run from <end> to <start> on the
reverse strand.

<attributes>
Each attribute in the <attribute> field should have the form:
 attribute_name “attribute_value”;

Attributes must end in a semicolon which must then be separated from the start of any
subsequent attribute by exactly one space character (NOT a tab character). Attributes’
values should be surrounded by double quotes.

All four features have the same two mandatory attributes at the end of the record:

gene_id A unique identifier for the genomic source of the transcript.
Used to group transcripts into genes.

transcript_id A unique identifier for the predicted transcript. Used to
group features into transcripts.

These attributes are designed for handling multiple transcripts from the same genomic
region. Any other attributes or comments must appear after these two.

[comments]
Any line may contain comments. Comments are indicated by the # character and
everything following a # character on any line is a comment. As such, all fields are
prohibited from containing # characters.

Here is an example of a gene on the negative strand. Larger coordinates are 5' of smaller
coordinates. Thus, the start codon is the 3 base pairs with largest coordinates among all
those base pairs that fall within the CDS regions. Similarly, the stop codon is the 3 base
pairs with coordinates just less than the smallest coordinates within the CDS regions.

Hs-Ch1 Twinscan CDS 193817 194022 . - 2 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 199645 199753 . - 2 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 200369 200507 . - 1 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 215991 216028 . - 0 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan start_codon 216026 216028 . - . gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan stop_codon 193814 193816 . - . gene_id "1"; transcript_id "1.a";

Note the frames of the coding exons. For example:
The first CDS (from 216028 to 215991) always has frame zero.
The frame of the first CDS is 0 and it has length 38. (38 - 0) % 3 = 2, so the frame of the
second CDS is 1 (the first two bases of the codon are on the previous exon leaving one
base at the start of this exon).

 - 88 -

The frame of the second CDS is 1 and it has length 139. (139 - 1) % 3 = 0, so the frame
of the third CDS is 0.
The frame of the third CDS is 0 and it has length 109. (109 - 0) % 3 = 1, so the frame of
the terminal CDS is 2 (the first base of the codon is on the previous exon leaving two
bases at the start of this exon).
Alternatively, the frame of terminal CDS can be calculated without the rest of the gene.
The length of the terminal CDS is 206. 206 % 3 = 2, which is the frame of the terminal
CDS.

Here is an example in which the "exon" feature is used. It is a 5 exon gene with 3
translated exons.

Hs-Ch1 Twinscan exon 150 200 . + . gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan exon 300 401 . + . gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 380 401 . + 0 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan exon 501 650 . + . gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 501 650 . + 2 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan exon 700 800 . + . gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan CDS 700 707 . + 2 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan exon 900 997 . + . gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan start_codon 380 382 . + 0 gene_id "1"; transcript_id "1.a";
Hs-Ch1 Twinscan stop_codon 708 710 . + 0 gene_id "1"; transcript_id "1.a";

 - 89 -

Appendix B: Fasta File Format

The fasta file format is a simple format for storing one or more genomic or protein
sequences. Each sequence is preceded by a header line which must begin with “>”. The
first word following “>” is the name of the sequence and all text following the name is a
description of the sequence. All lines following the header line contain the actual
sequence. All forms of whitespace in the sequence are ignored and there is no limit to the
number of characters allowed on a line. Any non-nucleic or non-amino acid characters in
the sequence of the file are illegal.

Fasta files with multiple sequences have multiple header lines each followed by one or
more lines containing the sequence associated with that header. Here is an example of a
multi sequence fasta file:

> seq_1 This is example sequence 1
TTCATTGTGTATTTTATCACACAAATAAGGCACAGATTTTTAAAAAATCA
TCAACTTCCTGGCTACCTATATAGACATAATTACATAGAAGCTCAACTAA
ATTTGCAAACATTCCAGAGTTTGGGTTTCCAATAATTCTTTGTGATTCTT
TAAAAGGTAAAGTATTTTTTTCCCATAAAACATAGCAACATTTAAAATCA
CCCGTAGAATGTCCTGCCATTTTTGTTTCTGTAGTTTCCTCATTTTCTGC
AAAGCCTCGCTGAGGAAATTGACTTTGAATATCCTTT
> seq_2 This is example sequence 2
TTTAGAAAGCATTGTGGTAAAACATTGAATCATCATGGTCATAAGTTCTG
TTCACATTCTTTCTTGCTTTGAATATTTTTTCCCAGTGGCCAATATTTGA
TTCTGTTGTATCATGGCTAAAAGGTAGGCATGGCAACAAAATAAAG
> seq_3 This is example sequence 3
GAAGTCTTTGGAATAAGTGATCCCATCACAATGAATCAATTTGCCATTGG
AACATATTTTTACAAAGTCACTCTTTTGAAAATATTTAGCTATGAATTAA
AACAGAGTCTGTATGGTTAATATTTTTCCTGGTCTAAGGTGAACAGCATT
TTAGAGAATGAACTCAGGACACAACCACAGCAGAAGAAAAACGTGATAAT
TAAGTTTACACATGTGTGTTACTACTGCAACAGAAAACATG

All fasta files used by the Eval package should contain a single genomic sequence.

 - 90 -

Appendix C: Conservation File Format

The conservation file is used by TWINSCAN to store information about the similarities
between some target sequence and some informant database of sequences. It is generated
by running BLAST [3] to compare the target sequence against the informant database. All
high scoring BLAST hits are incorporated into the conservation sequence in such a way
that for each base in the target sequence, the conservation sequence states whether that
base is matched, mismatched, or unaligned. If the base is matched, then the base is
covered by some high scoring BLAST hit and is aligned to a match (i.e. A to A). If the
base is mismatched, then the base is covered by a high scoring BLAST hit but is either
aligned to a mismatch (i.e. A to T) or aligned to a gap. If the base is unaligned, then no
high scoring BLAST hit covers it.

The conservation file format is very simple. Unlike fasta format, the sequence has no
header and only a single sequence is allowed per file. The file contains a single line,
which holds a string of “0”, “1”, and “2” characters. A “0” means that this base was
mismatched, a “1” means the base is matched, and a “2” means the base was unaligned.

 - 91 -

Appendix D: Example Eval Report

Summary Stats
Annotation: refseq.list
Predictions: twinscan.list

Gene Sensitivity 14.35%
Gene Specificity 6.55%
Transcript Sensitivity 12.83%
Transcript Specificity 6.55%
Exon Sensitivity 71.89%
Exon Specificity 38.58%
Nucleotide Sensitivity 83.50%
Nucleotide Specificity 41.95%

General Stats
Predictions:
 refseq.list twinscan.list
Gene
 All
 Count 11930.00 26119.00
 Total Transcripts 13812.00 26119.00
 Transcripts Per 1.16 1.00
Transcript
 All
 Count 13812.00 26119.00
 Average Length 46856.60 24042.48
 Total Length 647183295.00 627965594.00
 Average Coding Length 1491.43 1357.62
 Total Coding Length 20599564.00 35459553.00
 Average Score 0.00 215.19
 Total Score 0.00 5620498.75
 Exons Per 9.23 7.84
 Total Exons 127428.00 204729.00
 Complete
 Count 12476.00 24918.00
 Average Length 46460.42 23712.27
 Total Length 579640144.00 590862393.00
 Average Coding Length 1480.96 1361.40
 Total Coding Length 18476415.00 33923293.00
 Average Score 0.00 217.02
 Total Score 0.00 5407714.92
 Exons Per 9.33 7.82
 Total Exons 116452.00 194895.00
 Incomplete
 Count 1336.00 1201.00
 Average Length 50556.25 30893.59
 Total Length 67543151.00 37103201.00
 Average Coding Length 1589.18 1279.15
 Total Coding Length 2123149.00 1536260.00
 Average Score 0.00 177.17
 Total Score 0.00 212783.83
 Exons Per 8.22 8.19
 Total Exons 10976.00 9834.00
Exon
 All
 Count 109883.00 204729.00
 Average Length 164.74 173.20
 Total Length 18102268.00 35459553.00
 Average Score 0.00 21.69

 - 92 -

 Total Score 0.00 4440400.20
 Initial
 Count 10164.00 22002.00
 Average Length 180.63 168.70
 Total Length 1835955.00 3711673.00
 Average Score 0.00 18.96
 Total Score 0.00 417156.27
 Internal
 Count 87588.00 157247.00
 Average Length 143.53 154.42
 Total Length 12571788.00 24281817.00
 Average Score 0.00 22.12
 Total Score 0.00 3478941.25
 Terminal
 Count 10670.00 21745.00
 Average Length 224.94 237.55
 Total Length 2400130.00 5165434.00
 Average Score 0.00 14.73
 Total Score 0.00 320222.35
 Single
 Count 1488.00 3735.00
 Average Length 872.64 615.96
 Total Length 1298481.00 2300629.00
 Average Score 0.00 59.99
 Total Score 0.00 224080.33
 Intron
 Count 97658.00 178610.00
 Average Length 5541.95 3316.52
 Total Length 541215329.00 592363950.00
 Average Score 0.00 0.00
 Total Score 0.00 0.00
Nuc
 All
 Count 18102268.00 35459553.00
 Initial
 Count 1835955.00 3711673.00
 Internal
 Count 12571788.00 24281817.00
 Terminal
 Count 2400130.00 5165434.00
 Single
 Count 1298481.00 2300629.00
 Intron
 Count 541215329.00 592363950.00
Signal
 Splice Acceptor
 Count 98258.00 178992.00
 Splice Donor
 Count 97752.00 179249.00
 Start Codon
 Count 12656.00 25700.00
 Stop Codon
 Count 13074.00 25335.00

Detailed Stats
Annotation: refseq.list
Predictions: twinscan.list
Gene
 All
 Count 26119.00
 Ann Count 11930.00
 Total Transcripts 26119.00

 - 93 -

 Transcripts Per 1.00
 Correct Count 1712.00
 Correct Matched 1712.00
 Correct Specificity 6.55%
 Correct Sensitivity 14.35%
 Exact Count 1646.00
 Exact Matched 1646.00
 Exact Specificity 6.30%
 Exact Sensitivity 13.80%
 Overlap Count 12330.00
 Overlap Matched 10835.00
 Overlap Specificity 47.21%
 Overlap Sensitivity 90.82%
 Nuc Overlap Count 12172.00
 Nuc Overlap Matched 10775.00
 Nuc Overlap Specificity 46.60%
 Nuc Overlap Sensitivity 90.32%
 All Introns Count 1737.00
 All Introns Matched 1738.00
 All Introns Specificity 6.65%
 All Introns Sensitivity 14.57%
 All Exons Count 1712.00
 All Exons Matched 1712.00
 All Exons Specificity 6.55%
 All Exons Sensitivity 14.35%
 Exact Intron Count 9816.00
 Exact Intron Matched 9310.00
 Exact Intron Specificity 37.58%
 Exact Intron Sensitivity 78.04%
 Exact Exon Count 10789.00
 Exact Exon Matched 9797.00
 Exact Exon Specificity 41.31%
 Exact Exon Sensitivity 82.12%
 Start Codon Count 4636.00
 Start Codon Matched 4632.00
 Start Codon Specificity 17.75%
 Start Codon Sensitivity 38.83%
 Stop Codon Count 6930.00
 Stop Codon Matched 6920.00
 Stop Codon Specificity 26.53%
 Stop Codon Sensitivity 58.01%
 Start Stop Count 2793.00
 Start Stop Matched 2793.00
 Start Stop Specificity 10.69%
 Start Stop Sensitivity 23.41%
Transcript
 All
 Count 26119.00
 Ann Count 13812.00
 Average Length 24042.48
 Total Length 627965594.00
 Average Coding Length 1357.62
 Total Coding Length 35459553.00
 Average Score 215.19
 Total Score 5620498.75
 Exons Per 7.84
 Total Exons 204729.00
 Correct Count 1712.00
 Correct Matched 1772.00
 Correct Specificity 6.55%
 Correct Sensitivity 12.83%
 Exact Count 1646.00
 Exact Matched 1704.00

 - 94 -

 Exact Specificity 6.30%
 Exact Sensitivity 12.34%
 Overlap Count 12330.00
 Overlap Matched 12599.00
 Overlap Specificity 47.21%
 Overlap Sensitivity 91.22%
 Nuc Overlap Count 12172.00
 Nuc Overlap Matched 12517.00
 Nuc Overlap Specificity 46.60%
 Nuc Overlap Sensitivity 90.62%
 All Introns Count 1737.00
 All Introns Matched 1791.00
 All Introns Specificity 6.65%
 All Introns Sensitivity 12.97%
 All Exons Count 1712.00
 All Exons Matched 1772.00
 All Exons Specificity 6.55%
 All Exons Sensitivity 12.83%
 Exact Intron Count 9816.00
 Exact Intron Matched 10771.00
 Exact Intron Specificity 37.58%
 Exact Intron Sensitivity 77.98%
 Exact Exon Count 10789.00
 Exact Exon Matched 11325.00
 Exact Exon Specificity 41.31%
 Exact Exon Sensitivity 81.99%
 Start Codon Count 4636.00
 Start Codon Matched 5230.00
 Start Codon Specificity 17.75%
 Start Codon Sensitivity 37.87%
 Stop Codon Count 6930.00
 Stop Codon Matched 7635.00
 Stop Codon Specificity 26.53%
 Stop Codon Sensitivity 55.28%
 Start Stop Count 2793.00
 Start Stop Matched 2998.00
 Start Stop Specificity 10.69%
 Start Stop Sensitivity 21.71%
 Complete
 Count 24918.00
 Ann Count 12476.00
 Average Length 23712.27
 Total Length 590862393.00
 Average Coding Length 1361.40
 Total Coding Length 33923293.00
 Average Score 217.02
 Total Score 5407714.92
 Exons Per 7.82
 Total Exons 194895.00
 Correct Count 1712.00
 Correct Matched 1704.00
 Correct Specificity 6.87%
 Correct Sensitivity 13.66%
 Exact Count 1646.00
 Exact Matched 1704.00
 Exact Specificity 6.61%
 Exact Sensitivity 13.66%
 Overlap Count 11759.00
 Overlap Matched 11394.00
 Overlap Specificity 47.19%
 Overlap Sensitivity 91.33%
 Nuc Overlap Count 11606.00
 Nuc Overlap Matched 11318.00

 - 95 -

 Nuc Overlap Specificity 46.58%
 Nuc Overlap Sensitivity 90.72%
 All Introns Count 1729.00
 All Introns Matched 1594.00
 All Introns Specificity 6.94%
 All Introns Sensitivity 12.78%
 All Exons Count 1712.00
 All Exons Matched 1704.00
 All Exons Specificity 6.87%
 All Exons Sensitivity 13.66%
 Exact Intron Count 9340.00
 Exact Intron Matched 9902.00
 Exact Intron Specificity 37.48%
 Exact Intron Sensitivity 79.37%
 Exact Exon Count 10265.00
 Exact Exon Matched 10418.00
 Exact Exon Specificity 41.20%
 Exact Exon Sensitivity 83.50%
 Start Codon Count 4502.00
 Start Codon Matched 5162.00
 Start Codon Specificity 18.07%
 Start Codon Sensitivity 41.38%
 Stop Codon Count 6803.00
 Stop Codon Matched 7312.00
 Stop Codon Specificity 27.30%
 Stop Codon Sensitivity 58.61%
 Start Stop Count 2793.00
 Start Stop Matched 2998.00
 Start Stop Specificity 11.21%
 Start Stop Sensitivity 24.03%
 Incomplete
 Count 1201.00
 Ann Count 1336.00
 Average Length 30893.59
 Total Length 37103201.00
 Average Coding Length 1279.15
 Total Coding Length 1536260.00
 Average Score 177.17
 Total Score 212783.83
 Exons Per 8.19
 Total Exons 9834.00
 Correct Count 0.00
 Correct Matched 68.00
 Correct Specificity 0.00%
 Correct Sensitivity 5.09%
 Exact Count 0.00
 Exact Matched 0.00
 Exact Specificity 0.00%
 Exact Sensitivity 0.00%
 Overlap Count 571.00
 Overlap Matched 1205.00
 Overlap Specificity 47.54%
 Overlap Sensitivity 90.19%
 Nuc Overlap Count 566.00
 Nuc Overlap Matched 1199.00
 Nuc Overlap Specificity 47.13%
 Nuc Overlap Sensitivity 89.75%
 All Introns Count 8.00
 All Introns Matched 197.00
 All Introns Specificity 0.67%
 All Introns Sensitivity 14.75%
 All Exons Count 0.00
 All Exons Matched 68.00

 - 96 -

 All Exons Specificity 0.00%
 All Exons Sensitivity 5.09%
 Exact Intron Count 476.00
 Exact Intron Matched 869.00
 Exact Intron Specificity 39.63%
 Exact Intron Sensitivity 65.04%
 Exact Exon Count 524.00
 Exact Exon Matched 907.00
 Exact Exon Specificity 43.63%
 Exact Exon Sensitivity 67.89%
 Start Codon Count 134.00
 Start Codon Matched 68.00
 Start Codon Specificity 11.16%
 Start Codon Sensitivity 5.09%
 Stop Codon Count 127.00
 Stop Codon Matched 323.00
 Stop Codon Specificity 10.57%
 Stop Codon Sensitivity 24.18%
 Start Stop Count 0.00
 Start Stop Matched 0.00
 Start Stop Specificity 0.00%
 Start Stop Sensitivity 0.00%
Exon
 All
 Count 204729.00
 Ann Count 109883.00
 Average Length 173.20
 Total Length 35459553.00
 Average Score 21.69
 Total Score 4440400.20
 Correct Count 78987.00
 Correct Matched 78992.00
 Correct Specificity 38.58%
 Correct Sensitivity 71.89%
 Overlap Count 92156.00
 Overlap Matched 92300.00
 Overlap Specificity 45.01%
 Overlap Sensitivity 84.00%
 Overlap 80p Count 84955.00
 Overlap 80p Matched 85257.00
 Overlap 80p Specificity 41.50%
 Overlap 80p Sensitivity 77.59%
 Splice 5 Count 84203.00
 Splice 5 Matched 84594.00
 Splice 5 Specificity 41.13%
 Splice 5 Sensitivity 76.99%
 Splice 3 Count 85864.00
 Splice 3 Matched 86150.00
 Splice 3 Specificity 41.94%
 Splice 3 Sensitivity 78.40%
 Initial
 Count 22002.00
 Ann Count 10164.00
 Average Length 168.70
 Total Length 3711673.00
 Average Score 18.96
 Total Score 417156.27
 Correct Count 4056.00
 Correct Matched 3912.00
 Correct Specificity 18.43%
 Correct Sensitivity 38.49%
 Overlap Count 6475.00
 Overlap Matched 6982.00

 - 97 -

 Overlap Specificity 29.43%
 Overlap Sensitivity 68.69%
 Overlap 80p Count 5001.00
 Overlap 80p Matched 5063.00
 Overlap 80p Specificity 22.73%
 Overlap 80p Sensitivity 49.81%
 Splice 5 Count 4476.00
 Splice 5 Matched 4313.00
 Splice 5 Specificity 20.34%
 Splice 5 Sensitivity 42.43%
 Splice 3 Count 5863.00
 Splice 3 Matched 6395.00
 Splice 3 Specificity 26.65%
 Splice 3 Sensitivity 62.92%
 Internal
 Count 157247.00
 Ann Count 87588.00
 Average Length 154.42
 Total Length 24281817.00
 Average Score 22.12
 Total Score 3478941.25
 Correct Count 68635.00
 Correct Matched 68806.00
 Correct Specificity 43.65%
 Correct Sensitivity 78.56%
 Overlap Count 77015.00
 Overlap Matched 76576.00
 Overlap Specificity 48.98%
 Overlap Sensitivity 87.43%
 Overlap 80p Count 72257.00
 Overlap 80p Matched 72793.00
 Overlap 80p Specificity 45.95%
 Overlap 80p Sensitivity 83.11%
 Splice 5 Count 72006.00
 Splice 5 Matched 72441.00
 Splice 5 Specificity 45.79%
 Splice 5 Sensitivity 82.71%
 Splice 3 Count 73046.00
 Splice 3 Matched 72810.00
 Splice 3 Specificity 46.45%
 Splice 3 Sensitivity 83.13%
 Terminal
 Count 21745.00
 Ann Count 10670.00
 Average Length 237.55
 Total Length 5165434.00
 Average Score 14.73
 Total Score 320222.35
 Correct Count 5973.00
 Correct Matched 5978.00
 Correct Specificity 27.47%
 Correct Sensitivity 56.03%
 Overlap Count 7885.00
 Overlap Matched 7802.00
 Overlap Specificity 36.26%
 Overlap Sensitivity 73.12%
 Overlap 80p Count 7047.00
 Overlap 80p Matched 6752.00
 Overlap 80p Specificity 32.41%
 Overlap 80p Sensitivity 63.28%
 Splice 5 Count 7193.00
 Splice 5 Matched 7330.00
 Splice 5 Specificity 33.08%

 - 98 -

 Splice 5 Sensitivity 68.70%
 Splice 3 Count 6454.00
 Splice 3 Matched 6366.00
 Splice 3 Specificity 29.68%
 Splice 3 Sensitivity 59.66%
 Single
 Count 3735.00
 Ann Count 1488.00
 Average Length 615.96
 Total Length 2300629.00
 Average Score 59.99
 Total Score 224080.33
 Correct Count 323.00
 Correct Matched 307.00
 Correct Specificity 8.65%
 Correct Sensitivity 20.63%
 Overlap Count 781.00
 Overlap Matched 960.00
 Overlap Specificity 20.91%
 Overlap Sensitivity 64.52%
 Overlap 80p Count 650.00
 Overlap 80p Matched 665.00
 Overlap 80p Specificity 17.40%
 Overlap 80p Sensitivity 44.69%
 Splice 5 Count 528.00
 Splice 5 Matched 524.00
 Splice 5 Specificity 14.14%
 Splice 5 Sensitivity 35.22%
 Splice 3 Count 501.00
 Splice 3 Matched 595.00
 Splice 3 Specificity 13.41%
 Splice 3 Sensitivity 39.99%
 Intron
 Count 178610.00
 Ann Count 97658.00
 Average Length 3316.52
 Total Length 592363950.00
 Average Score 0.00
 Total Score 0.00
 Correct Count 70985.00
 Correct Matched 70989.00
 Correct Specificity 39.74%
 Correct Sensitivity 72.69%
 Overlap Count 88390.00
 Overlap Matched 87982.00
 Overlap Specificity 49.49%
 Overlap Sensitivity 90.09%
 Overlap 80p Count 75066.00
 Overlap 80p Matched 75303.00
 Overlap 80p Specificity 42.03%
 Overlap 80p Sensitivity 77.11%
 Splice 5 Count 78619.00
 Splice 5 Matched 79168.00
 Splice 5 Specificity 44.02%
 Splice 5 Sensitivity 81.07%
 Splice 3 Count 78932.00
 Splice 3 Matched 79421.00
 Splice 3 Specificity 44.19%
 Splice 3 Sensitivity 81.33%
Nuc
 All
 Count 35459553.00
 Ann Count 18102268.00

 - 99 -

 Correct Count 14873635.00
 Correct Matched 15115875.00
 Correct Specificity 41.95%
 Correct Sensitivity 83.50%
 Initial
 Count 3711673.00
 Ann Count 1835955.00
 Correct Count 1239150.00
 Correct Matched 1373641.00
 Correct Specificity 33.39%
 Correct Sensitivity 74.82%
 Internal
 Count 24281817.00
 Ann Count 12571788.00
 Correct Count 11095186.00
 Correct Matched 10953990.00
 Correct Specificity 45.69%
 Correct Sensitivity 87.13%
 Terminal
 Count 5165434.00
 Ann Count 2400130.00
 Correct Count 1891305.00
 Correct Matched 1853291.00
 Correct Specificity 36.61%
 Correct Sensitivity 77.22%
 Single
 Count 2300629.00
 Ann Count 1298481.00
 Correct Count 647994.00
 Correct Matched 937630.00
 Correct Specificity 28.17%
 Correct Sensitivity 72.21%
 Intron
 Count 592363950.00
 Ann Count 541215329.00
 Correct Count 254351879.00
 Correct Matched 260829844.00
 Correct Specificity 42.94%
 Correct Sensitivity 48.19%
Signal
 Splice Acceptor
 Count 178992.00
 Ann Count 98254.00
 Correct Count 0.00
 Correct Matched 0.00
 Correct Specificity 0.00%
 Correct Sensitivity 0.00%
 Splice Donor
 Count 179249.00
 Ann Count 97729.00
 Correct Count 0.00
 Correct Matched 0.00
 Correct Specificity 0.00%
 Correct Sensitivity 0.00%
 Start Codon
 Count 25700.00
 Ann Count 12656.00
 Correct Count 0.00
 Correct Matched 0.00
 Correct Specificity 0.00%
 Correct Sensitivity 0.00%
 Stop Codon
 Count 25335.00

 - 100 -

 Ann Count 13074.00
 Correct Count 0.00
 Correct Matched 0.00
 Correct Specificity 0.00%
 Correct Sensitivity 0.00%

 - 101 -

Index
ab initio ..- 7 -
bins...- 19 -
central dogma of molecular biology...- 5 -
cluster...- 20 -
codon..- 5 -
conservation sequence..- 9 -, - 90 -
data types

ann_listbox...- 73 -
aref..- 32 -
array..- 32 -
Boolean...- 32 -
cluster...- 69 -
cluster_count..- 69 -
Feature..- 46 -
fh ..- 32 -
filter ..- 62 -
float...- 32 -
frame...- 73 -
fref ..- 32 -
Gene...- 38 -
GTF..- 34 -
GTF_obj...- 51 -
GTF_set..- 51 -
hash...- 32 -
href ...- 32 -
int..- 32 -
listbox...- 73 -
pred_listbox..- 73 -
pvar...- 32 -
resolution..- 65 -
stats_struct..- 52 -
Transcript...- 40 -

de novo ...- 7 -
Distribution...See Eval Functions
DNA ...- 6 -
eukaryotes...- 5 -
Eval

command line interface..- 27 -
Eval Report...- 91 -
Functions

Distribution...- 21 -, - 26 -, - 30 -, - 70 -
Evaluate..- 18 -, - 24 -, - 27 -, - 56 -
Filter ...- 18 -, - 24 -, - 28 -, - 62 -
General Statistics.. - 18 -, - 24 -, - 27 -, - 61 -

 - 102 -

Graph..- 19 -, - 25 -, - 28 -, - 64 -
Overlap...- 20 -, - 26 -, - 29 -, - 67 -

GUI...- 22 -
requirements...- 10 -
Statistics...- 12 -

eval.pl..See programs
Eval.pm...See libraries
Evaluate.. See Eval Functions
evaluate_gtf.pl... See programs
fasta...- 10 -, - 22 -, - 89 -
Filter ...See Eval Functions
filter_gtfs.pl...See programs
gene..- 5 -
gene expression..- 5 -
gene structure...- 5 -, - 7 -
General Statistics..See Eval Functions
get_distribution.pl...See programs
get_general_stats.pl...See programs
get_overlap_stats.pl...See programs
gnuplot...- 10 -, - 25 -, - 81 -
Graph..See Eval Functions
graph_gtfs.pl..See programs
GTF..- 7 -, - 10 -, - 51 -, - 86 -

Fields
attributes...- 87 -
end..- 86 -
feature...- 86 -
frame...- 87 -
score...- 86 -
seqname..- 86 -
source...- 86 -
start...- 86 -

GTF set...- 12 -, - 51 -
GTF.pm...See libraries
GTF.pm style objects... - 33 -
initial exon..- 7 -
libraries

Eval.pm..- 51 -
GTF.pm..- 33 -

list file...- 22 -
mRNA..- 5 -
Overlap... See Eval Functions
overlap property...- 20 -
primary transcript...- 5 -
programs

eval.pl...- 22 -, - 72 -

 - 103 -

evaluate_gtf.pl..- 27 -, - 83 -
filter_gtfs.pl..- 28 -, - 83 -
get_distribution.pl..- 30 -, - 84 -
get_general_stats.pl..- 27 -, - 83 -
get_overlap_stats.pl..- 29 -, - 84 -
graph_gtfs.pl...- 28 -, - 84 -
validate_gtf.pl...- 10 -

prokaryotes...- 5 -
protein...- 5 -
RNA ...- 5 -
splice sites..- 7 -
start codon..- 7 -
stop codon..- 7 -
terminal exon..- 7 -
Tk ..- 10 -, - 27 -, - 72 -
transcript region..- 12 -
transcription..- 5 -, - 6 -
translation...- 5 -, - 6 -
TWINSCAN ...- 9 -, - 90 -
untranslated region (UTR)...- 7 -
validate_gtf.pl.. See programs
X-Split..- 19 -

 - 104 -

References
1. http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml; GFF specification.
2. http://www.cs.wisc.edu/~ghost/; Ghostview.
3. http://blast.wustl.edu/; Gish, W., WU-BLAST.
4. http://www.gnuplot.info/; Gnuplot.
5. Burge, C. and S. Karlin, Prediction of complete gene structures in human genomic

DNA. J Mol Biol, 1997. 268(1): p. 78-94.
6. Burge, C.B. and S. Karlin, Finding the genes in genomic DNA. Curr Opin Struct Biol,

1998. 8(3): p. 346-54.
7. Burset, M. and R. Guigo, Evaluation of gene structure prediction programs.

Genomics, 1996. 34(3): p. 353-67.
8. Fickett, J.W., Finding genes by computer: the state of the art. Trends Genet, 1996.

12(8): p. 316-20.
9. Flicek, P., et al., Leveraging the mouse genome for gene prediction in human: from

whole-genome shotgun reads to a global synteny map. Genome Res, 2003. 13(1): p.
46-54.

10. Guigo, R., et al., An assessment of gene prediction accuracy in large DNA
sequences. Genome Res, 2000. 10(10): p. 1631-42.

11. Guigo, R., et al., Prediction of gene structure. J Mol Biol, 1992. 226(1): p. 141-57.
12. Korf, I., et al., Integrating genomic homology into gene structure prediction.

Bioinformatics, 2001. 17 Suppl 1: p. S140-8.
13. Lodish, H., et al., Molecular Cell Biology. 4th ed. 2000, New York: W. H. Freeman

and Company.
14. Mathe, C., et al., Current methods of gene prediction, their strengths and

weaknesses. Nucleic Acids Res, 2002. 30(19): p. 4103-17.
15. Parra, G., et al., Comparative gene prediction in human and mouse. Genome Res,

2003. 13(1): p. 108-17.

