Masters Project Report

Eval: A Gene Set Comparison System

Evan Keibler
evan@cse.wustl.edu

Table of Contents

Table Of CONTENLS. ... e nnne e e e -2-
Chapter 1: INtrodUCHION.iiiiiii e eeee e e e e e e e T D =
1.1 GENE SITUCTULE. ...t eeeee ettt eeeeer e e e ee et e e e e e entaa e e eeneans -5-
1.2 GENE RBAICIOIS ... ittt e e e e e e e e e e anaas -7-
L B BVl e ~O-
Chapter 2: User Level Documentation................uuueiiicccreeeeeeiiiiiises e e e e e e eeeesnanns -10-
P2 R I Y -1 = o) o UPS -10-
2.2 EVAlI OVEIVIEW....uiiiiie i i eeeeeeee et emme e e -12-
N R = 11] 1 03P -12-
GENE LEVEL.. oo -14-
TransCript LEVEL.... ..o -.14-
EXON LEVEL....oeeeeeeeee et -16-
NUC LEVEL ... e -17-
SIGNAl LEVEL ... e a e ane -17-

2. 2.2 EVAlUALE.o —————- - 18-
2.2.3 GenelaStatiStiCS.....cooiiiii e eeiiieeeeeeee e L8 -
2. 2.4 FI B e e —————— - 18-
2.2.5 Gra bl e et ———————— -19-
P G T @ V= .1 o O UPUPRR -20-
2.2.7 DIStIDULION.......ooeiieiiiic s eeemss e e e e e e e e e e eeeesann s 21
2.3 EVAI QUL s -22-
2.3. 1 OVEIVIEW.....coiiiiiieeeeiitt et e e e e e e e emmeaa e e e e e e e e e e e e e e e eeannnas -22-
2.3.2 Loading the GUIL.........coiiiiieeee ettt eeeeaeea 1 22
PG T |V 1< o 1 L PPN -23-
2.3 4 EVal SAEN.....cccooviiii e sennnnn . 24
2.3.5 GENSTIALS SCIEEIM....cceviiiiiiii et rmmr e 2.24-
2.3.6 FIllEr SCIEEM...... it =.24-
2.3.7 Graph SCrEEIN.......uueeiei et -.25-
2.3.8 OVEIIAP SCIEM.....uuiiiiiiiiiiiii e +.26-
2.3.9 DISt SCIEEN......ceeeeeiieiiiie et e e e e e e e e smemrass e e e e e e e aeaaaaeensann s 207
2.4 Eval Command Line INterfaCes.......ccoooveeeeeiiiiiieeeie e -27-
2.4.1 evaluate _gtf.pl.....ccoiii e .27 -
2.4.2 get_general_statS.pl..........ooooiiiiiiiiiiee e - 27-
2.4. 3 Miter_gtS. Pl an - 28-
2.4.4 graph_gtfS.pl. ..o -.28-
2.4.5 get_overlap_StatS.pl.......oooo oo - 29-
2.4.6 get_distriDULION. Pl oo - 30-
Chapter 3: Code Level DOCUMENTALON.uviiiiiiiiieieeeeeeeeee e meee e -32-
3.1 OVEIVIEW. ...ttt e e e e emmn e e e e e e e e e e e e e e e e amennaeeeeead - 32-
T 0 B = = B)Y/ 01 PP PP PP PP -32-
3.1.2 Naming SChEMES.........oooiiiiiiimme e 1 3O -

B2, OVBIVIBW. ..o et e e e e e e e -33-

3.2.2 GTF ODJECL.....vvtiiiiiiie e eeeevieeen e e e e e e e e eeeeennssnnanen - 3=
(€] 0] o T2 1 IV 2= T =1 0] [T =.34-
(OF0] 1 1571 (¥ o (o] SRR - 35-
ACCESSOI FUNCHIONS.....ccuiiiiiiiii e ee e e e e ereee s e s s san e eensa T OO
1 o To [1{T=T gl U [ox 10 o = = 37-
INtErNAI FUNCHIONS......uiiiiiiii et eremr e e e e e e e eaas .37-

3.2.3 GENE ODJECL...cciiiiiiiiiiiice et e e rreer e e e e e e e e aaaaaand - 38-
(€] 0] o T2 1 IV 2= T =1 0] [T -.38-
(T 0] 1 1571 (¥ o (o] S PTPN - 38-
ACCESSOI FUNCHIONS.....ccuiiiiiiiiiii et e e e e e ereee s e e e s saa e eenea T OO -
1o To 1) 1=T g U] T2 0 1 £ = 40-

3.2.4 Transcript OBJeCt..........c.cuuuiiiiiiiiiiieeeiiiiiieieieeeeeeee e eeeeeeee 2 40 -
(€] o] P IV Z= T E=1 o] [Ty -.40-
(@] 1 11 (£ o (o] -42-
ACCESSOI FUNCLIONS......ccivviiiiiiie e svemmra e e eave e ennnne a2 A2 -
Yo Yo LTS gl LU T T3 1] g Fo ~44-
INtErNal FUNCLIONS.iiiiee e erre e e e e 2.45-

3.2.5 Feature ODJECT......ccoo i =.46-
(€] o] P IV Z= T E=1 o] [T -.46-
(@] 1 11 (£ o o] -47-
ACCESSOI FUNCLIONS......ccivviiiiiiie et eemmra e e eane e ennne a2 48 -
MOIfIEr FUNCHIONS.....ceuiii et eeeme et e e e e e eees =50-

GG 31 V7= 1IN o] o S RRRORTRRE S o ¥ I

3.3.1 Definition Of STAtiStICS.....uuiieeiiee it ceeee e e :51-
Top-level StatisticCS FUNCHIONS...........uvvviiiiii e eeee -52-
Gene Level Statistics FUNCHIONS.oooivviiiiiiiieeceeee e -52-
Transcript Level StatisticsS FUNCHONS............vviiiiiie e -.53-
Exon Level StatistiCS FUNCHONS........ouuiiiiiieeiee e aeee e -54-
Nuc Level StatisticsS FUNCHONS........cocuveiiiiiiiii e eeee e -54-
Signal Level StatisticsS FUNCHONSccvviiiiiiiiiiiiiieeeeeeeeeeeee e -55-

3.3.2 Evaluate FUNCHIONS.........coouviiiiii et - 56-
List Comparison FUNCHONS.........cooiiiiiiiiiiiiceee et eseeeeaeeeeen = DO -
Object CompariSORUNCHIONS.c.coeiiiiiiiiiiiiieeee e e e - 58-
Initialization and Clean up FUNCHONS...........uuuiiiiiiiiiiiieeeiiieieeeeeee e =.59-
Data Collection FUNCHONS............oiiiiiiiiiiiime e e seeeeaeaneeeenn 00 -
Statistic Calculation FUNCHIONS............uiiiiiiiiiiieece e -61-

3.3.3 General StatistiCsS FUNCHONS.........oiiiiiiiiiiceee e eemeeaa -61-

3.3.4 FIEr FUNCITONS....ceeiii ittt eeeemr et e e e e e eees ~62-

3.3.5 Graph FUNCHONS.........cuuiiiiiiiii st e e e e ssesiss s e e e e e e eeaaaeennna 7 O -

3.3.6 OVerlap FUNCLONS........coooiiiiiiii e - 67-
Specifc Overlap Type FUNCLIONS...........eiiiiiieiee e eeaeeen, -67-
Cluster Building FUNCHIONS..........ccoooiiiiiiiiiiic e eeeeeennn = 08 -
Overlap Test FUNCHONSuiiii i ececeeeeeere e eeeeeeeeee e = 70-

3.3.7 DIStribution fUNCHONS........civeiiiiii e e eee e e e : 70-

3.3.8 General Functions and Variables.............o.oeviiivcieiceieeeee e = 72-

Global Variables.o e -72-

FUNCHIONS. ... et e e e e e e e e e eeee e e e e s -72-

BeA BVALPL. o :72-
4. L OVEIVIEW. ...ttt eeeteee ettt e et e e e e e e e e e e s st e e e e e e e e e e e e e e s s s s s nnnnnas -72-
Data TYPES. ... e -73-

3.4.2 CONSTANTS......coiiiiiiie et e et e e et rmr e e e e e e nn e e e e e e nenmmmes -73-
3.4.3 Global Variables.............uuuiiiiiiiieeeeiiiiiee e eseeeesins e eeeeenenn s (D -
I o U o 1o o PP PP PP P PP -75-
INItialiZation FUNCHONS.......uiiiiiiiiee e eeeer e e e - 75-
General FUNCHONS. ...ttt eee et eree e e e e e e e e e e e as = 75-

MENU FUNCHONS.....uitiiiiieiee et rene e e e e e e e e e e eeeeeeesennnnn -.76-

(@])1 T0] g FSJN U] [od 1 o] 1< = 77-

Eval Frame FUNCHONS.........ouiiiiiiiiie et e e e e e = 77-
GenStats Frame FUNCLONS.ueiiiiiiiiiiiiieeeiiieiiieeeeeeeee e sssssmmmeaeeeeennnar 19

Filter Frame FUNCHONS..... ..ot ceeeeeceeee e - 79-

Graph Frame FUNCHONSoiiiiiii e ceeceeeies e eeeeeeeeeee e = 80-
Overlap Statistics Frame FUNCHQNS............ooooiiiiiieenn e - 81-

Dist Frame FUNCHONS.........cooiiiiiiiiieeee e eeeesse et eeeeeeed - 82-

3.5 EVAI SCIIPTS. ..ttt e - 83-
3.5. 1 evaluate _gtf.pl.......oooeeee e =.83-
3.5.2 get_general_StatS.pl..........ooiiiiiiiiiiee e - 83-
B.5.3filter_gtfs.pl ..o e - 83-
3.5.4 graph_gtfS.pl. ..o -.84-
3.5.5 get_overlap_StatS.pl.........cooriiiieiiii e - 84-
3.5.6 get_distribDUtioN.Pl........oooiiiiiiii e - 84-
Chapter 4: FULUIE WOIK..... ...t eeeeee e e -.85-
AppendixA: GTF File Format SpecifiCation.............covviiiiiiiiccees -.86-
Appendix B: Fasta File FOrmaL.............coooiiiiiiiieeei e eeeeeeeeeeeeeeeee e = 89-
Appendix C: Conservation File FOrmat...............ccuuviiiimemniiiiiiiiiee e -90-
Appendix D: Example Eval REPOLL.........ccooiiiiiiiiiiieeee e -91-
0T LSRR = 101-
RETEIBNCES. ... eeenr bbb - 104-

Chapter 1. Introduction

1.1 Gene Structure

As large amounts of high quality genomic sequence became available for many
organisms the problem of gefiading changed from the analysis of small segmehts
the genome, typically $s than 150,00Bases, to find a single protein coding gene, to the
analysis of largamounts of genomic sequence, up to billions of bases, to identify all
protein coding gend8, 11, 14] In the past, analysis typically consisted of a single
expert manually looking at all available evidence and trying to anrtb&atgene
structure by hand. This mossible whemnnotating small amounts of sequence for a
small number of genes, but is very expensive and tedious. Attempting to annotate
billions of bases of sequence by hand isfeasibledue to the enormous numls man
hours it would requireTherefore atomated gene prediction systems are required to
process this large amount of dg#a6, 8, 11, 14] Before further discussion of current
automated gene prediction systems a brief introduction tosjareure the ouput of
these systemss needed.

The central dogma of molecular biologtates that DNA is transcribed into RNA which

is in turn translated into prein. A genecan be defined as tmegion of DNA which

codes for a particular protein and allacint regios which regulate stexpression.

Gene expressiois the processes by which the information encoded in a gene is decoded
into a protein Genes are processed differentlywo types of organisms: prokaryotes
which are organisms whose cells have no nucleus, and eukawybtels are organisms
whose cells do have a nucleughe translatiorprocesss identicalfor these two types of
organisms buthte transcriptiorprocesgliffers[13].

In prokaryotic organismghe region of the genghich is transcribed into RNA a

continuous stretch of DNA, all of which isdn translated into a proteiim eukaryotic
organisms the translated region of the gene, the régionwhich the protein will be

built, is normally not continuous. Instedlde transcribed region @mprised of

alternating stretches of exons andans where only the exon regions will i@nslated

The transcription procesakes place in the cell nucleus @rghscribes both exons and
introns into a primariRNA transcriptin the same order as they appear in the genomic
sequenceA process called splicing removes the intron regions and combines the exons
regions to creatdne mature messenger RNA (MRNAJhe nRNA is thenexported

from the nucleus antlanslated into a proteifiL3] (Figure 1)

In both prokaryotes and eukaryotes RNA is transcribed into protein in three base pair
increments called codon#\ proteinis a string of amino acids, andad codorsignals
thata specificamino acidshould be adel to theend of theprotein. Every mRNA should
have length evenly divisible by three since it must contain only whole c¢ti®js

In certain situations the same primary transcript can be spliced in more than one way to
yield different proteins. This isatled alternative splicing. Primary RNA transcsipire

not spliced differently in the same cell at the same time but instead in different cells or at
different timeq13].

This paper deals primarily viteukaryotic gene predictions. Though the software
described can be used for prokaryotic gene predictions also, many of the tools described
have significantly less utility whemo genes contain introns.

Ay EUCARYOTES FROCARYOTES

cytoplasm
- l TRANSCRIPTION

nueslaus
—_—
intrans [EERalis-] m“NA |I
m N l TRANSLATION
.- . f/'\\
{ __- = —1 e— ___ p:rnlmln:l

g =

THAN!‘.\LHIFT'ION
Prima |rv RMA 1r1r|‘sL ||::-I

HN-‘:. PLICING
mRMNA _
F}(PORT
mANA _
mmswncu
proteln Iz

Figure 1. Genetranscription and translation in eukaryotes (A) and prokaryotes (B).

In its natural statd)NA is double stranded helix made uppairs offour different
nucleotidesadenine, guanine, cytosine, and thyemrhich areeferred o by the

symbols A, C, G, and T respectively always pairs with T and C always pairs with G

and these pairings are said to be complementagnes may reside on either strand but
are always processed from the 5’ end to the 3’ difte 5’ end of one sind is the 3’ end

of the other so eadtrand is the reverse complement of the ofh&}. This means that if
one were to write the string of nucleotides which makeaclhstrand ofa DNA

sequence from the ®&nd to the 3’ end separately, each strand’s string would be made of
only four characters (A, C, G, and T) and each would be the same as the other except that
the nucleotides would occur in the reverse order and all nucleotides would be replaced
with their complementary nucleotidélypically the strands are called the plus strand and
the minus strand, and the 5’ end of the plus strand is considered position 1.

A multi-exon eukaryotic gene has the following structure. It begins with a promoter
region, whch regulates gene expression, and is followed by a transcribed but non

proteincoding region called the 5' untranslated reqidmR). Next comes the initial

exon which contains the start codand an alternating series of introns and internal

exons, followed by the terminal exon, which contains the stop cddenterminal exon

is followed by another nenoding region called the 3' UTR.h& start and stop codons

are specific three bagair long sequences which signal the beginning and the end of the
transcript to the protein creation machinery. The e@rtmon boundaries, also knovas

splice #tes are signaled bypecific twobase paisequences located at the edges of the
intron. The 5' end of an intron is called the donor splice site, and the 3’ end of an intron is
called the acceptor splice s|t].

start codon EXONS stop codon

__—

introns

JUTR

5UTR

promoter
GCG|ATG|GTA

GC[TAG|CA

splice sites

Figure 2. A typical multi-exon eukaryotic gene structure. The start and stop codons aswell asthe
examples of both donor and acceptor splice sites are shown in detail.

It is often very difficult to locate all regulatory regions of a gamstknowing the protein
product of a gene is more useful than knowing the location of all regulatory regions
mostautomatedjenepredictors focus ofinding only the region of DNA which is
transcribed to RNAS, 6].

1.2 Gene Predictors

Most nodern atomated gene prediction systems fall into one of two categories:
transcript alignmerrbased prediction systems aatalinitio, de novo or genomeonly
prediction systems. The transcript alignment based systems attempt to map known
transcripts from the species being annotated or from other species to the genome being
annotated. If successfutlis highly likely that the region the known transcript was
mapped tas also a gene. Tloe novo gene predictors use only genomic data to predict
genes. They amgenerallypbased on some type of complex probability modetived

from the expected structure of genéhese computationgkene pediction systems
generallyhave many input parametens addition tothe sequence to be annotated, which
determine the types and number of genes they pretietir output is a set gfene
structure, whichidentify the location and structure of the genethim input sequence
(i.e.[5, 6, 9, 15).

One standard file format for storing gene structures is. G3FF stands for Gene
Transfer Format. This format facilitates the storage of four types of “features”: exons,

-7-

coding exons, start codons, and stop codons. The diffefgetween an exon and a
coding exon is that a coding exisnboth translated and transcribed while a-noding

exon is only transcribedin general exons can be located in the UTR region, which
defines them nowoding exons as the UTR is not translated protein. This distinction

is importantboth because it is required to determine the protein product of a gene and
because coding exons must obey more rules (i.e.-fiarime stop codons) than non
coding exons Each feature takes up one line of @EF file and stores the information
needed to uniquely identify that feature. Features are grouped into transcripts and
transcripts are grouped into genes. A transcript corresponds to a single RNA transcript as
described above and a gene correspondsweral transcripts which are alternative
splices of each other. A complete specification of the GTF file format can be found in
Appendix A.

1.3 Eval

As stated above, most automated gene prediction systems are typically based on large,
complex probabity models withmanyparameters. Changing these parameters can
change the gene predictor’'s performance as measured by the accuracy with which it
predicts the exons and gene structures in a standard annoftide.traditional

measures of accuracy copubie performance of gene predictpfs10], these measures

are oftemot enough to yield insight into why a gene predatics performing well or

poorly. A deep analysis requires considering many features of a prediction set and its
relation to the standard set, such as the distribution of number of exons per gene, the
distribution of predicted exon length, and accuracg asction of GC percentage. Such
statistics can reveal which parameters or parameter sets are working well and which need
tuning.

When gene predictors are run on whole mammalian chromosomes they will be
processing ~5@00 million bases of sequence amddcting thousands of genes. When
gene predictors are run on whole mammalian genomes they will be processing up to
billions of bases of sequence and predicting up to tens of thousands ofige{®&sl5]).

An analysis system is needed to process this large amount of data and present itin a
compact enougform for a human to view.

Because of the size and complexity of automated gene predictors and the volume of data
generated by running them on the egeswing amount of genomic sequence, we
developed the Eval system. Eval is a software tool for amgyamd comparing gene

sets. These summaries provide a human with a comprehensive overview of the large
guantities of data produced by hitiiroughput automated gene predictors. It can
compare a standard annotation set to a prediction set and geneideaange of

statistics showing how and to what extent the sets are similar. It can also compute
statistics on a single set of gene annotations. It includes functionality to produce graphs
of computed statistics versus characteristics of the genessangraphs of distributions

of any computed statistic across the gene set. It can dewayltcomparison between

gene sets to determine the similarities and differences among multiple gene sets. It can

-8-

also build new gene sets from subsets of the gehehiwineet a specified set of criteria.
Thus, Eval provides a powerful set of tools for analyzing the differences and similarities
between gene prediction systems and adjusting their behavior.

Eval was primarily written forwINSCAN [12], ade novo gene predictor. ThenINSCAN
system compares the input genomic sequence to that of another organism, finds the
similarities, and creates a new sequence, called the conservation segineites given

as input tahegene prediction softwareAlthough Eval has some features which are
primarily useful for viewingrwiNSCAN gene predictions, such as conservation sequence
graphs, theyastmajority of its functionality is very useful for viewing and comparing
gene setérom any source.

Although the GTF file format is a fairly simple and well defined format, data is often
claimed to be in GTF format when it does not comply completely with the specification.
Most data is generated in some proprietary format specifietparticular program or

lab which produced it. These proprietary formats often differ in small subtle ways, such
as the sequence being indexed starting at position 0 or 1, or the start/stop codon being
inside or outside of the initial/terminal exon.the data is to be effectively shared with
others it must be in a standard, well defined format. Though many labs do convert their
data to GTF format, the files they generate rarely comply completely with the
specification. For this reason the GTF vaitavas created. The validator allows the

user to verify that the data is in correct GTF format before sharing with others. This
makes communication more efficient because the receiver does not have to locate and fix
the subtle differences between thenpéle formats.

Chapter 2: User Level Documentation

This chapter provides user level documentationHferBvalpackage. Each program’s
input andoutput is describei$ described in detail arekamples of usease for each
program are presented

All programs ath libraries are written in Pefbr use on Linux based systems. The

programs have been tested extensively on Red Hat Linux 6 or greater and Perl version 5.6
or greater. The Perl Tiwoduleversion 8.0 or grateris required to load the graphical

user interfaceGUI) to the Eval package and gnuplé} version 3.0 or greates required

to display graphs when using the GUf.gnuplot is not in the user’s path the
EVAL_GNUPLOT environment variable should be set tofilepath and filename of

gnuplot (i.e. /usr/birgnuplo).

Although the GTFspecification does not state that all genes in a gtf file must be from the
same sequence or in the same coordinate systens grequirement for using the Eval
software. Any GTF file used gny of the programs or liiries described belomust
contain annotation & single sequence witti genes in the same coordinate system (that
of the sequence they annotate)

2.1 GTF Validator

The GTF validator, validate_gtf.plhastwo mainfunctions: verifying correcGTF file
format and verifying that the genes specified byGfé- file do not violate the rules of
gene structureThe validator takes @TF file and optionally a fastfil e (see Appendix B
for thefasta file format specificatigrcontaining the genomic sequeneeich the GTF

file annotates.When run without the correspondiggnomicsequencghe validator
checks the file for format errors and tihatgenesviolate the ruts of gene structured.

no coding exonsfter the stop codon, all transcripts contain coding region, etc). When
run with the corresponding sequence the validator also checks that the gene structure
could have come from this sequence.(start and stp codons andplice sites have the
correct sequence, the genes contain Ffeaime stop codongrior to any annotated stop
codon, etc.). Checking the GTF file withe sequencean also help to identifyndexing
problems in the filei(e. off by 1 erroj but increases the running time drastically.

All GTF fields as well as thegene_id and <transcript_id> attributes will be listed in
angled brackets (<field name>)designate them &TF fieldnames.

Arguments

These and all other arguments describatiis document are listed in the same order
they must be given to the program.

-10-

GTF File | TheGTFfile to validate.
Fasta File | The sequencthatGTF File annotatesin fasta format. This argument
is optional.

Options

Theseand all other options desioed in this document can be given to the program in
any order but must come before aflthe arguments to the function.

-t <file> Writes eaclsplicedtranscripts sequence, including the start and stop
codonstofile. This option can only besad if e optionaFasta File
argument is given.

-f Creates a neWTFfile with the same name &TF File but ending in
“fixed.gtf”. The new file is identical to the original file but has no
GTFformat errors. If the input file is very badly formatted it nmeay
be possible to automatically fix it. “Fixed” files should always be
checked for correctness either by hand or by rerunning validate gtf.pl.

-S Outputs the<transcript_id of each transcriptontainingan inframe
stop codorprior to eitherthe annoteed stop codowrtheend of the
gene if no stop codon is annotated

-C Suppress warnings about missing start/stop codons.
-p Suppress warnings about nstandard splice sites.
Output

Thevalidator’s autput is written to standard out. The first fiwecurrences of any error

or warning are displayed in detadut details about any additional occurrermes
suppressedThis is done to make the output more readable. Since this program is used
to check for correct file format often finds systematierrors thaoccur thousands of
timesin aGTFfile, and seeing details abouspecificformat error five times is just as
informative as seeing it a thousand times. Following tHetsleddescriptions, the total
number of each error and warning ig¢dis. The last data reported are general statistics
about the number of genes, transcripts, and coding exons in the file.

The validdor is useful for checking GTF file for errors before sharing thigefor using

it as input to anothgsrogram. Whenevethe GTF file may contain problems (the

program that produced it has changed, the file was imported from somewhere else, etc.) it
should be checked for errors before being shared or used. The validator is also useful for
identifying common gene predicterrors during gene predictor development. Problems
such as ifframe stop codons are identified allowing the developers to find and correct
theerror.

Often the source of gene annotation and genomic sequence are different, because
different labs work t@sequence organisms and annotate sequéise, many version of
a particular sequence are often available, since the sequence, espdécialdylarge
scale sequendike a whole chromosomeés constantly being updated and with more

-11-

reads and bettassemblies until a final, complete version of the sequence is made
available. The validator cdre used t@nsure that the annotation is fmmeparticular
version of thesequence and not some other

2.2 Eval Overview

The Eval package is used to congrand analyzeets of gene predictien It has six

main functions which perform different types of gene set comparisons and statistical
calculations. Each of the main furais is described below. This section gige
overview of what the Eval packagan do, notnstructions orhow to do it. That
information is given in the descriptions of tiiger interfaces to the Eval fage in
sections 2.3 and.2

The inputs to all main Eval functions are set&offiles. For a descriptionfahe GTF

file format see Appendix AA set of GTF files is just an ordered list of GTF files each of
which resides in its own coordinate systevilhen an Eval function compares GTF sets
the first GTF file from each list is compared to each other, theseécond GTF files are
compared, and so on. So, whemparingGTF sets the user must be certain that the
GTF files in the first position of all GTF sets are in the same coordinates as each other, as
are the files in the second position, and so onhércase of whole genome comparisons,
GTF sets would be loaded which contain a GTF file for each chromosome. Eval would
compare the chromosomeal'F from one list to the chromosomeGT'F from the other

lists, then compartthe chromosome ZTF files and soon through the listFor using

Eval to analyze single GTF file§TF sets can contain only a single GTF file.

Eval is primarily used for gathering data on the coding region of genes. As such, it
ignoresany exon type featureas theyare used taesighate norcoding exons. exon

type features are used to calculate the start and end of transcripts, but are never directly
used in any comparison. Any Eval function whieports statistics on exons is, in fact,
reporting statistics on CDS features (codaxgns).

Some of the descriptions below use the term “transcript régibime transcript region is
defined as the area from the 5’ end of the 5’ most feature of the transcript to the 3’ end of
the 3’ most feature of the trangatri In other words, thentire genomic region which is
transcribed into RNA.

2.2.1 Statistics

Each main function of the Eval package ubessameset of statisticsComparisons
between sets of gene dagajuire that one see designated the annotation set and one set
the prediction set. The statistics repomdedhis comparisoshow how similar the
prediction set is to the annotation set. Although most statistics do not chiaege
swapping the annotation and predictietsgother than the prediction statistics becoming
the annotation statistics and vice versa) some do and the distinction is important.

-12-

The statistics are organized into a hierarchy of three levels: Level, Type Sthis the
most specific of the theeand each Stat contains a single statistic about the ldatel is

the most general of the three andanizes all Stats into groups which contain data about
similar kinds of objects(i.e. exons, genes, etc)lypes are used to furthgartitionall

Stasat a given Level into grougontainingdata abousimilar kinds of objectsi.g.

specific types of exons)Objects are designated as being of a certain Level and Type,
and the Stats at a given Level and Type contain data only on the objects whitthate
Level and Type.Each level of the hierarchy is described in detail bedo@ an example

of all Stats at every Level and Type can be seen in Appendix D

Statistics are split into fiveevels Gene, Transcript, Exon, Nuc, andSgnal. TheGene
Lewel contairs statistics which deal withenes, th@ranscript Levelcontains statistics
which deal with transcriptgnd so on.

EachLevelis further split intoTypes EachTypeis a subset of the statistics at a given
Level which contain data amspecfic subset of thebjectsat thatLevel Whether or not

an object at a givebhevelis of a certaiTypemust be able to be determined from that
object alone, without making any comparisons to other objé&stamples oExon Level
Types ardnitial andTerminal, which contain statistics only on exons which are initial o
terminal exons, respectively. Note that determining that an exon is an initial exon or a
terminal exon does not require any comparison to any other gene.

EachLevelcontains a set @tatswhich are calculated for eadlype of thisLevel Stats
contain the actual data reported by Eaaldare made up dfvo nonoverlapping sets
calledGeneral StatandComparison StatsGeneral Statare those which can be
calculated using a single jelst (no comparisons are needed). Exampl&3earferal Stats
areAverage Length andAverage Score, since the score and length of an object do not
depend on anything but the object itsélfomparison Stats atkose whose calculations
do require comparisoi other objects. Comparison Stats are made up of groups of
Substats which are organized into Comparison Stat Types. Comparison Staar€ypes
subsets of the objects at a given Level and Tybere membership in the subset

requires comparison to sometfwer object. Examples of Comparison Stat Types are
Overlap andCorrect, since the object must overlap or be correct as compared to some
other object. For each Comparison Stat Tygesame four Substats are calculated. The
Substats areCount, Matched, Sensitivity andSpecificity. So for theOverlap Comparison
Stat Type, four Stats are calculated for each Type at the current Ogedhp Count,
Overlap Matched, Overlap Sensitivity, andOverlap Specificity. Count is just the nmber

of objects of thewrrentLevel andType which are found to be part of tldiemparison

Stat Typesubset.Matched is the number of annotation objeetgh which some

prediction object matches to be included in@wmparison Stalypesubset. Sensitivity

is defined as trupositives divided by the sum of true positives and false negatives, but is
calculated aMatched divided by the total number of annotatiobjects of this Level and
Type. A positive indicates that the object is in the subset and a negative indicates that
is not. Specificity is defined as true positives divided by the sum of true positives and
false positives and is calculated@sunt divided by the total numbef prediction

objects of this Level andype. By calculatingensitivity andSpecificity in this way they

- 13-

are guaranteed never to excédi%. This is not true if they were calculated according
to thar definition since two or more prediction objects could match a single annotation
object or a single prediction object could match two or mon®i@tion objects, allowing
the trie positive counto be greater than either the total number of annotation objects or
the total number of prediction obje@tsa given Level and Type

Appendix D contains an example Eval report which contains all 8tatsch Level and
Type.

Below is a definition of each Type and Stat for eaelidl. Any object mentioned in a
statistics description beloean be assumed bee from the set the statistic is being
calculated for unless it is explicitly stated to be ajecttfrom the annotation set being
compared against.

Gene Level
Types
All All genes.
General Stats
Count The number of genes.
Ann Count The number of genes the set being compared against

Total Transcripts | The total number of transcripts in allrgss.
Transcripts Per The average number of transcripts per gene.

Comparison Stat Types
Correct A gene is in any of the these Comparison Stat Types if and
Exact only if one or more of its transcripts is in thenscript Level
Overlap Comparison Stat Type of the san@me.
Nuc Overlap
All Introns
All Exons
Exact Intron
Exact Exon
Sart Codon
Sop Codon
Sart Sop

Transcript Level

Types
All All transcripts
Complete Transcripts which have both a start and a stop codon.
Incomplete Transcripts which do not have both a start and a stop codon.

-14-

General Stats

Count
Ann Count

Average Length

Total Length

Average Coding
Length

Total Coding
Length

Average Score

Total Score

Exons Per
Total Exons

Correct

Exact
Overlap

Nuc Overlap

All Introns

All Exons

Exact Intron

Exact Exon

The total number of transcripts.

The total number of transcripits the set being compared
against

The average transcript region length

The sum of the length of each transcrggjion

The average coding lengtlf all transcripts, where the coding
length is defined to bine sum of the length of all coding
exans in atranscript.

The sum of the coding length of each transcript.

The averagef the sum of the scores of all GTF features of all
transcripts.

The sum of the score of each transcript.

The average number of coding exons per transcript.

The total number of coding exons in all transcripts.

Comparison &t Types

A predicted transcriphich exactly matches all features in
some annotated transcript. The predicted transTrgyt

contain features beyond either or betids of the anotated
transcript as long as tlanotated transcript is not “closed”

with a start or stopodon on that end.

A predictedtranscriptwhich isidenticalto some annotated
transcriptover their entire lengtbf both transcripts

A predicted transcript whose region overlaps some annotated
transcripts region and is on the same strand.

A predicted transcript which hatslaast one coding exon

which overlaps acoding exon from somannotated transcript

by at least ondase pair The two transcripts must be on the
same strand.

Each intron in the annotated transcript is also in the predicted
transcript and the predicted transcript contains no additional
introns which overlap the annédd transcript. Similato the
Correct measure the predicted transcript can contdrons
beyond the end of the annotated transcript if the annotated
transcript is not “closed” with a start or stop codon on that end.
Similar to theAll Introns measure except that akons instead

of introns must be idem@l. This is the same as t@errect
measure expect that the start and stop codon are not checked.
A predicted transcript which matchasleast one intron
exactlyto some intron in an annotated tremgt.

A predicted transcript which matchasleast onexonexactly

to some exon in an annotated transcript

-15-

Sart Codon A predicted transcript which has exactly the same start codon
as some annotated transcript

Sop Codon A predicted trascript which has exactly the same stop codon
as some annotated transcript
Sart Siop A predicted transcript which has exactly the same start and

stop codons as some annotated transcript

Exon Levd

When two of the same exons exist in a data set tleefyeated as a single exon when
calculating théexon Level Stats. Two of the same exons can exist in the same data set
when transcripts which are alternative splices of each other have some exon in common.
Exons are considered to be the same exonyfhlage the same <start>, <end>, and
<strand> values. In this watheExon Level Stats are a set of statistics on all unique

exons in the data set.

Types
All All coding exons.
Initial The5’ mostcoding exon in anynulti-exontranscript which
has a starcodon.
Internal All coding exons which are not Initial, Terminal or Single.
Terminal The 3’ mostcoding exon in anynulti-exontranscript which
has a stop codon.
Sngle The only coding exon in any transcript containing only one
coding exon.
Intron All introns.
General Stats
Count The total number of objects.
Ann Count The total number of objecis the set being compared against
Average Length The average length of aibjects.
Total Length The sum of the lengths of all objects.
Average Score The average of the scores of all objects.
Total Score The sum of the scores of all objects.

Comparison Stat Types

Correct A predicted object which is identical (same <start>, <end>,
and <strand> values) to some annotated object.

Overlap A predicted olgctwhich overlas some annotated objech
the same strand.

Overlap 80p A predicted objectvhich overlas some annotated objech
the sametsand by at least 80% of the length of the longer
object.

Flice5 A predicted object which has the same 5’ ltany as some

annotated object on the same strand.

-16-

Slice 3 A predicted object which has the same 3’ boundary as some
annotated object on the same strand.

Nuc Level

Types
All Any nucleotide covered by any exon.
Initial Any nucleotide covered by dnitial exon.
Internal Any nucleotidecovered by annternalexon.
Terminal Any nucleotidecovered by a @minal exon.
Sngle Any nucleotide covered by%ingle exon.
Intron Any nucleotide covered by an intron.

General Stats
Count The total number ofucleotides.
Ann Count The total number of annotated nucleotides.

Comparison Stat Types
Correct If the Type is not Intron, then a nucleotide is correct anytime
any annotated ebng exon overlaps it. If theype is Intron
then the nucleotide is correctyatime any annotated intron

overlaps it.
Signal Levd:
Types
Splice Donor The 3’ end of an Initial or Internal exon.
Solice Acceptor The 5’ end of a Terminal or Internal exon.
Sart Codon The start codon of any transcript.
Sop Codon The stop codonf any transcript.
General Stats
Count The ptal number of signals of thisyjpe in the prediction.
Ann Count The totalnumber of signals of thisype in the annotation.

Comparison Stat Types
Correct The signal is correct if is appears exactly in kb prediction
and the annotation. For splice sites this means they have the
same position and are on the same strand. For start and stop
codons this means that all three bases of the codon are in the
same location and on the same strand

-17-

2.2.2 Evaluate

The Evaluate function is the main function of the Eval package. $es to compara

set ofprediction GTF files to aet ofannotationGTF files ands useful for finding the
degree of similarity between many aspects of the two €ximparisons between the two
setsof GTF filesare reportedsaa set of statistics, whichdescribed above. The output
from the Evaluate function is called an Eval report. The Evaluate faristtbe most
used Eval function and many of the other functions are nothing but aktematys of
viewing its results.

This function is primarily used for comparing the output from gene predictors to some
standard annotation. It reports to what exteatgene predictions and the annotation are
similar or different This is useful for judging the performance of a gene predictor. It can
handle comparisons of everything from single genes, to whole chromosomes, to whole
genomes. The function can alsmused to compare to sets of predictions to each other to
see how similar they are.

2.2.3 General Statistics

This function is used to get general statistics ab@ingleGTF set. It reports a subset of
the statistics reported by thed#uate function, containing all Levels, all Types, but only
General StatsThe output of th&eneral StatisticRinction is also referred to as an Eval
report as it isn the same format as the output from the Evaluate function but wotne
values (those for Comparison Stdefj out

This function is useful for getting a general overview of a si@Ji€ set. When first

dealing with a new genome it is good to know what, omames genes of this genome

look like. For example, how many exons per transcript does it have? What is the
average exon length®hat is the average gedensity? This is useful information

which varies from genome to genome. This function is adsdl for tuning parameters

of a gene predictor to output genes with some specific characteristics. Suppose a gene
predictor is currently outputting transcripts whion averagecontain 7 exons and have

a length of 30,000ase pas, but the organism whidhis being run on has genes that
averagecontain 9 exons and have a length of 40}0@€e pas. This change can

probably be achieved by altering the input parametettset gene predictorubgene
predictors are made of complex mathematical nsoded it is rarely clear how changing

an input parameter will change the output. This function allows the user to check that the
desired changes in the output did occur and that no additional, undesired changes in
others statistics occurred.

2.2.4 Filter

This function is used to select a subseGdf style objects(Genes, Transcripts, and
Exons)from aGTF set and create a né®TF set from them. The selected subset may be
any subsetalculated by the Evaluafunction. This includes allypes and Comparison

-18-

Stat Types listed insection2.2.1above. Te union, intersection, and complimentofy
valid subsets may also be selected

The Filter function is useful for tacking downdsuor improving performance in gene
predictors. All predicted transcripts which overlap but do not exactly match an annotated
transcript can be selected and checked closer manually to find why they are not exactly
matching it. Thd-ilter functionis alsogood for finding examples. Perhaps a gene which
gene predictor predictscorrecly but gene predictor 2 predigtecorrectly is wanted.

This is easy to find using thglter functionbut would be tedious to find by hand.

2.2.5 Graph

This function is used to graph a certain statistic as a function of some other computable
value on the objects. The objects first are split into consecutivegvestappng bins
according to some -$plit type at soméevel (see below). The statistic being graphed is
then computed for each bilins are graphed on theaxis and tk value of the statistic
beingcomputed is graphed on theayis.

Level
Gene Separate objecisto bins ofgenes.
Transcript | Separate objectato bins of transcripts.
Exon Separat®bjectsinto bins of exons.
X-Splits
GC% Separate objectato bins according teachobject’s GC percentage.
Match% Separate objectato bins according to the percentadgematched

bases ireachobject’s conservation sequence.

Mismatch% | Separate objectato bins according to the percentage of
mismatched bases @achobject’s conservation sequence.

Unaligned% | Separate objectato bins according to the percentage adligned
bases ireachobject’s conservation sequence.

Length Separate objectato bins according to the length edichobject.

Bins are consecutive, nemverlapping ranges of valuestbe X-Split type. The number

of bins and size of eadin is determined by parameters to the function. Values for the
y-axis can be any statistic computed in the Evaluate function. If the split is made at the
ExonLevel the statistic cannbe from the Transcript of Gene\el because a single
transcriptor gene may have had its exons split into more than one bin. Similarly if the
spit was done at the Transcripeizel, the yaxis statisticcannot be from the Gene\el.

TheGraph functions useful for seeing how a statistic is changing as compared to
another property of the objexfrom which the statistic wasmputed Graphing

Transcript Sensitivity againstTranscript Length can show if a gene predictor is having
problems predicting short or lotiganscriptsrelative to the other. Often timegenes

with different GC percentages have different characterigt8js The Graph function

can be used to see if a certain gene predictor is having trouble with genes in a particular

-19-

GC range or just to see how genes in a particularad@e look in general. The
Match%, Mismatch%, andUnaligned% X-Splits are useful primarily witlfwINSCAN, but
can also be used with any otlyeme pedictor which uses some secondary sequence.

2.2.6 Overlap

The Overlap function is used to build clusteXSGTF styleobjects which share some
property, called the overlap propert.cluster is defined as a group of objects, each of
which shares the overlap propertythwat least one other object in the cluster and no
objects outside the clusteGiven one or mor&TF sets, tis function builds clustersf
objectsand outputs statistics describing how the objects were clustered together.
Possible overlap propertiese:

Transcript Exact Exon Overlap Transcriptsvhich have one or more exons
in common

Transcript Exact Intron Overlap Transcriptsvhich have one or more introns
in common

Transcript Coding Overlap Transcripts whose coding liegs overlap
by at least one base pair.

Transcript Region Overlap Transcrips whose regions overlap by at

least onébasepair.
Transcript 80p Both Region Overlap | Transcrips whoseregions overlap by at
least 80% of the length of the longer region.

Transcript 80p Region Overlap Transcrips whoseegions overlap by at
least 80% of the length of the shorter
region.

Transcript Exact Overlap Transcriptsvhich are identicalstart and
stop codons and all coding exons are the
same)

Exon One Base Overlap Exonswhich overlap each other by at least
1 basepair.

Exon 80p Both Overlap Exonswhich overlap each other by at least
80% of the longer exon.

Exon 80p Overlap Exonswhich overlap each other by at least
80% of the shorter exon.

Exon Exact Overlap Exonswhich are identical (<start> and

<end> values are the same)
*All overlapproperties require that the two objects are on the same .strand

Once the clusters are built they are separated into cluster #pdgster type
correspondto a subset ahe GTF sets which were given agputto this function and
contain clusters with objects from all and only @Gi€F sets in the subset. For example
if clusters were built from three sets®TF files, label them A, B, and C, clusters which
contain objec from A and B and none from C would be one cluster type, and clusters
which contain only objects from B would be another. A cluster type exists foneach
emptysubset of the inpus TF sets(this example has seven cluster typesB, C, AB,

-20-

AC, BC, ad ABC). For each cluster typthe number of clusters in that type, as well as
the number of objects in clusters of this type which came from eachGiptset is
reported.In the example abovd, only two clusters of type AB were created and one
contaned one object from A and one object from B and the other contained two objects
from A and one from B, the results reported by this function would include a description
of the AB cluster type which would state that it contained two clusters, three dhjects
the A input set, and two objects from the B input set.

TheOverlap functiorallows the user to see how multiple setg@fepredictions are

similar to one anotherAll other functions of Eval do onlgair wisecomparison but

overlap analysis calind threeway or greater similarities between GTF sefthough it

is useful for looking a one or two sets, it is most useful for seeing how three or more sets
compare to each other, as other Eval functions can give more detailed analysis of two set
comparisons.

Building clusters of identical genes from a standard annotation set and two prediction sets
from two gene predictorsan show how similar the prediction sets are as compared to the
annotation set. It could show that the two gene predictorgradécting the same or
completely separate sets of correct and incorrect genes. If the two gene predictors correct
gene sets have a small intersection and their incorrect gene sets have a large intersection,
then the two gene predictors could be combinetteate a system which has both a

higher sensitivity and specificity than either one its own. This would signal that either

gene predictor could benefit from incorporating features of the other.

2.2.7 Distribution

TheDistribution functionis used to see how the density of objects changes across values
of some property. For example you could tsg to view a distribution dExons Per
Transcript, which would report theumber of transcripts with exons, for all values of.
Instead of reporting all values ofthe function can report bireg valuesof n to make the
results easier to read and to allow for continuous values or small sample spaces.

Distributions whichcan be calculated are:

Transcripts Per Gene The number of transcripts agene.

Exons Per Transcript The number of exons @mtranscript.

Transcript Length The length of dranscrip's region.

Transcript Coding Length | The sum of the length of all codj exons of a
transcript.

Exon Length The length ofinexon.

Exon Score The score o&nexon.

Distributions are useful for seeing how some property is distributed across the data. The
Evaluate function gives average valbes averages can be misleagliwhen they are
coming from certain types of distributions, such as@dbdal distribution. Te average

-21-

valuecan giveno indication of the distribution of values in the data and may even be a
value that is never or rarely seen in the data. The distiibof gene lengths could be
plotted for an annotation set and a prediction set and this could show that the prediction
set is overor undefpredicting shorand longgenegelative to moderate length genes,
which is something that an average vadl@e cannot show.

2.3 Eval GUI

2.3.1 Overview

eval.pl is the graphical user interface for the Eval package. It is the easiest way to use the
Eval package and is more efficientevhmultiple analyses are being run. The user can

load one of more GTF sets into memory and analyze them using the Eval package. This
allows multiple analyses which use the same data set to be run without having to reload
the data to memory. Since whaleromosome or genome data sets are very large,

loading them often takes a significant fraction of the total time of the analysis, so keeping
the data in memory provides a considerable decrease in the total time required for
multiple analyses.

The Eval @JI contains a help system consisting of several postscript files. These files
should be located in a directory calleglp located off of the directory containing eval.pl.
The files can be moved to some other directory buEW#. HELP environment

varigble must then be set to that directory in order to view the files (i.e.
/usr/local/eval/help). The GUI attempts to display the files using ghostvie2{gVvif

the ghostview program is not in the user’s pathB¥&L_GV environment variable
should be set to the full path and filename of ghostview or some other postscrgt view
program (i.e/usr/X11R6/bin/gy.

2.3.2 Loading the GUI

Running eval.pl starts the GUI. It has no required arguments but can optionally take one
or more list files to load into memony list file is used to load GTF sets into mamo

Each line ofalist file contains the information for loading a sin@&F file and

optionally nucleotide and conservation sequence fischline contairs three tab

separated fields and htee following format:

<GTFfilename> [nucleotide sequemrcfilename] [conservation sequence filename]
The nucleotide sequence should be in féstaat. Both sequence files are optional, and
either can be included with or without the other. If the conservation sequence is included

and the nucletide sequence is not, two tabs should be places betwe&THi@ename
and the conservation filenamall files loaded from dist file make up a singl&TF set.

-22-

The progranhasthe following options:

-c | Specify a file other thanevalrcin the uses home directory (see sectiar8.3
below), from which to load the users options

-g | Load command line argumentssisgleGTF files unless they end in .list.

-l | Load command line argumentsles files unless they end in .gtf or .gff. This
is the defalt.

-n | Do not load nucleotide sequence or conservation sequence files.

-v | Turn verbose mode on. This will send status reports to standard error.

-V | Turn really verbose mode on. This is normal verbose mode plus reports of all
errors and warninggeneatedwhile loadingindividual GTFfiles.

-h | Displaythe usge statement and exit

The GUIis organized around armtovides access to the six main functions of the Eval
package. At the top of the screen is a menu bar which is described in the 28c3ion

below. Under that is a horizontal bar of buttons, each of which corresponds to one of the
main Eval functions.Clicking one of these buttons displays the screen from which its
function can beun. Each individual function’s screen is descrilieds own section

below.

2.3.3 Menus

A standard menu bar appears across the top of the window. It contains menus entitled
File, Edit, andHelp. Each of these menus are described in detail below.

TheFile menu contains four command3pen, Save, Remove and Exit. Open opens a
Open Filedialogboxwhich allows the user to open new list&FF files. Save allows

the user to save aiyTF set currently in memory. This is used to save GAW sets
generated by the Filter functiolG TF sets containing onlyne GTF file save only that

file and allow the user to specify the filename to which it is sa@IF sets containing
more than on&TFfile are saved as a new list file, under a filename selected by the user,
and allGTFfiles in the set are saved in th&me directory as the list file under filenames
of the formfilename.#.gtf, wherefilename is the name the list file was written to ahd

the position of eacBTFfile in the list. TheRemove command allows the user to unload
any of theGTF sets from mmory. The final command of the File meniexst, which
unloads allIGTF sets from memory and closes the GUI.

TheEdit menu contains a single commafgytions, which brings up th&dit Options
screen. This allows the user to edit his .evalrc file whaitains the preferences to be
loaded at startup. THedit Options screen has two panes. The filkhvas the user to
select for each Levelwhich Stats andyipes are inclued in any Eal report If a box is
unchecked, it means that that stat or tyjiebe left out of all reports generated. The
second pane allows the user to select the graph tieswsldor each type of graph-3plit.
Two options are available for graph resolutions. The first is the Uniform resolution
which allows the user to spégia Minimum X Value, Bin Sze, andNumber of Bins, and
generatedlumber of Bins congcutive bins, each having siBen Width and the first

-23-

starting aMinimum X Value. The second graph resolution type is User Defined. This
allows the user to create biokany size in any location. The only restrictions are that
bins cannot overlap and there can be no gaps between binga 8m is defined from
0-100 and a second is defined from 48D, a new bin from 16050 is automatically
added. The bottom dle screen has buttons to save the options and close the window.
Closing the window discards any unsaved changes to the options.

The Help menu contains two commanésout, which displag a dialog withgeneral
information about thewval.pl program, andHelp, which opes the Eval package
documentation.

2.3.4 Eval Screen

This screen providesccess to the Evaludienction of the Eval package. A single
annotationGTF set is selected from the upperlisk and one or moneredictionGTF

set ae selected from the lower lisix. TheRun Eval button starts the comparison.

Once the calculations are complete the results are displayed in a new window. The report
contains three sections: Summary Statistics, General Statsstttfeailed Statistics.

The Summary fatisticssectionreports theCorrect Sensitivity andCorrect Specificity for

All Genes, All Transcript, All Exons andAll Nucleotides. This gives a good overview of

how similar theGTF sets are. The General S¢atis section reports all General Stats,
organized into bvels andl'ypes. The Detailed Statistissctionreportsall Stats, sorted

by Level and Vpe. Each predictioBTF set has its own column of values in each

section of theeport. All sections incluelSats on all prediction sets that were selected,

but the General Statistics section also display&#reeralStats for the annotation set.
Buttons to close the output window and to save the output are loc#tedoattom of the
window. TheSave button opens &ave He dialogboxwhich allows the user to chose a

file to which the output is saved. Files are saved in text format with each line having the
statistic name on the left followed by the value for each prediction set. Each prediction
has itsown column of values and columns are tab separated to make the file easy to load
into a spreadsheet. Each label and value is also padded with spaces to make the report
readable in a standard text editing a fixed width font TheClose button closeshe

window displaying the results.

2.3.5 GenStats Screen

This screemprovidesaccess to the General Statistigsction of the Eval package€sTF
sets are selected from tligbox and theGet Sats button is ged to start the calculations.
The results are displayed and sawvedienticallythe same was as they aretba Eval
screenexcept that only the General Statistics section is reported.

2.3.6 Filter Screen

This screen allows the user to filter onemmreGTF sets based on comparison to some
annotationGTF set usingthe Filterfunction of the Eval packageThe initial screen is

-24-

for the selection of a single annotation set and one or more prediction sets, exactly as in
the Eval function. The&sdect Filters button displays the next screen whistlused to

select the filter to apply. The top two listboxes allow the user to choose Sitegk to

use. Selecting advel in the left listbox didpys a set of filters fohiat Level in the right
listbox. TheAdd Filter button at the bottom of the screen adds the currently selected
filters to theFilter Key listbox. TheRemove Filter button removes all highlighted filters

in theFilter Key listbox. All filters in theFilter Key listbox are assigned one character
alphabetic labels, whiche@wused to represent that filtertheFilter Sring. TheFilter

String tells the program how to apply the filters you have chosen. Each single filter from
theFilter Key listbox specifes a subset of thabjects in theGTF sets which are being

filtered and can be combined in several ways. Single filters can be joined with set
intersection by separating them with “&&f’e. “A&&B”) or nothing (i.e. “AB”), or with

set union by separatirtgem with “||” {.e. “A||B”). Filters can also be group with
parenthesisi.e. “A||(BC)”) to specify the order which in filters should be applied. Filters
may be negated with set complement BY’ (i.e.“!A” or “I(A[|B)”) which selects all

objects whit are not selected by the negated filter. Rtue button will filter the
selectegredictions according to tHalter Sring, and add the new, filter&aITF set to

the list of possibl&TF setsto use in eackval function The filtered GTF sets will be
addedunder the same name as the GTF set they were created from except that the string
in thebottomtextbox is inserted into the name prior to “.gtf” or “.list”.the bottom

textbox is emptyfiltered” is inserted into the namelo save the filtere@GTF set for

future use, use theave command under thiéile menu.

2.3.7 Graph Screen

This screen allows users to make Estgle graphs from one or more prediction sets
string the GrapHunction of the Eval packageThe firg screen is used to select a single
annotation set and one or moreddcdon sets from which to make graphSraphs are
made only from the prediction sets, fi@m the annotation set. Tlgelect Graphs

button moves to the next screen whigye X-Split and Levelare chosen. The top listbox
selects thé.evelat which the data will beplit, and the middle listbox selects the
property by whth thedataare split. Thesdlected Graphs listbox shows all the graphs
which will be calculated. Thadd button adds the currently selected LevelSplit
combination to th&elected Graphs listbox. TheRemove button removes any oently
selected graphs in ti&elected Graphs listbox. TheCreate Graphs button will calculate
all graphsspecified in theéselected Graphs listbox and move tohte next screen. All
possible yvalues are calculated for eachvel/X-Split combination. All graphs are
calculated using the user’s graph resolution options, accessible fr@pttbies
command under thiedit menu. The final scem selects which graphs to display or save.
The top listbox selects one or more predicsets to include in the grapimet middle
listbox selecd the Level/X-Split combination, andne bottom listboxeselect the value to
graphon the yaxis. All avaihble yvalues for the currentevel/X-Split are listed. The
Choose Graphs button will return to the previous screen so that ne\plgrean be
created TheView button displays the currently selected graph using gnuplo¢Save
button wll display a Save He dialogbox which saves the graps a tab delimited text
file. The first line contains theyalue and_evel/X-split of this graph the second line

-25-

contains a tab delimited list of the prediction set names. All following linesiodthie
bin followed by a th delimited list of the value dhis bin for each prediction sén the
same order as the names are listed on the second line. Each bin hasatigtfo#h
where the first#’ is the lowerboundfor the bin and theecond'#’ is the uppeibound
for the bin.

2.3.8 Overlap Screen

This screen allows the user to build overlap clusters frorsiifesetsusing the Overlap
function of the Eval packageThe upper listbox is used to select @B sets from

which to build the clusters. The lower listbox is used to select the overlap type, which
specifies ow to build the clusters. THget Overlap button will calculate overlap

clusters from the select&ITF sets using the selected overlap type d@splay the results

in a new window The top of th@ewwindow shows thé&abel Key which mapdabelsto
GTF set names. Below thebel Key is a list of all possible cluster types and the number
of clusters of that type, and for eaBi F set the percentage objects from that set

which are in clusters of this type, and finally the percentage of total clusters which are of
this type. Atthe bottom of the screen issave button, which opens a Savéerdialog

box which allows the results to be saved tatadelimited text filen the same format as
the display window with all data separated by tabd,a@ ose button which closes the
display window.

2.3.9 Digt Screen

This screen allows the user to build Eval distributifvom one or mor&TF sets. The
upper listbox is used to select one or m@iid- sets from which the distributions will be
made. The lower listbox is used to select the type of distributions to generatéetThe
Distribution button generates one dibution for each selectddTF set for each selected
distribution type, and displays the next screen. On this screen the listbox is used to select
the GTF set distribution to view or save. Two textboxes allow the user to enter values
which set the uppedrsound of the distribution and a bin size to use when reporting the
data. The lowerbound of any distribution is always zer@ny data point occurring

above the upper bound will be place in an “extra” bst past the upper bouné.
checkbox allows thaser to change the distribution to a cumulative distribution, where
thereportedvalue for each bin is the size of the bin plus the sizes of all bins which are
located below the current bifihe Back button allows the user to return to the previous
screerto select new GTF sets and predictions to generate. This will cause any
previously calculated distributions to be discard&€te View button will displaythe
distributionin a new window using gnuplaind theSave button will display a 8veFile
dialogboxwhich allows the user to save the distribution to a it ff saved as a text
file the first line will be the distribution name followed layes containing single tab
separated bhsize pairs. e bin has formdt#-#’, where the'#” symbok aretwo

numbers specifying the loweaind uppetbound of the bin, and the size is a single
number representing how maabjects fall into that bin. Omé final linethe bin haghe
form “#+" where“#" is the upper bound of the maximum valued bin and its size
represents how many obijects fall above the maximum bin.

-26-

2.4 Eval Command Line Interfaces

The Eval package includesrfeach main Eval function, a Perl script to run that function
from the commandine. The commandre interfaces to the Eval functions provide

quick, efficient access to each Eval functiohorly a single analysis is being ruhey

can save time by avoiding the overhead associated with loading and displaying the GUI.
Also, if many separate analysaeed to be run, the command line interfatiesv them

to be run on a compute clustéfhe command line interfaces do not require th®&i
module.

2.4.1 evaluate gtf.pl

This is the command line interface to the Evaluate function of the Eval package. It takes
a set of annotatio@TF files and one or more sets of predict®mF files, runs the

Evaluate function to compare all pretibns to the annotation and outputs all statistics
calculated. It takes the following arguments:

Annotation A list file containing the annotatioBTF set.
Prediction1 | A list file containing the first predictioGTF set.
Prediction2 | A list file conténing seconchext predictiorGTF set.

Prediction 2 is optional and can be followed by any number of additional predi&idn
sets to be compared to the annotation set.

The program has the following options:
-g | The argumentare singleGTF files ratherthanlist files.
-v | Turns verbose mode on

-h | Displays the usage statement and exit

The output is sent to standard out and is in the same format as when saved to a text file
from the GUI.

2.4.2 get_general_stats.pl

This is the command line interface to the General Statistics function of the Eval package.
It takes one or more setsGTTF files and reports Eval éheralStatsabout them. It takes

the following arguments:

GTF St 1 A list file containing the first GTF set
GTF Set 2 A list file containing the second GTF set

-27-

GTF St 2 is optional and can be followed by any number of additiGTF setsfor
whichto calculde general statistics

The program has the following options:

-g | Theargumentsre singleGTF files rather thatist files.
-v | Turns verbose mode on
-h | Displays the usage statement and exit

The output is sent to standard out and is in the sammata@as when saved to a text file
from the GUI.

2.4.3 filter _gtfs.pl

This program is the command line interface to the Filter function of the Evalgeacka
takes a filter file, a set of annotati@TF files, and one or more sets of predicti@iF

files, filters the predictions according to the filter file, and saves the results to files with
the same name as the inpuédiction filesbut ending in iftered.list or .filtered.gtf. It
takes the following arguments:

Filter File A file specifying the filters to be used. See below for format.
Annotation A list file containing the annotatioBTF set.

Prediction1 | A list file containing the firsGTF sd to be filtered.

Prediction2 | A list file containing the secon@TF set to be filtered.

Prediction 2 is optional and can be followed by any number of additi@TF sets to be
filtered.

The program has the following options:

-f | Prints all valid sing? filtersto standard out and esit
-g | The argumemtare singl&STF files rather thatist files.
-h | Displays the usage statement and exit

Each line of thé-ilter File should have a single character label, followed Hgsh,

followed by a single fier, all separated by any amountvafiitespace. As many single

filters as needed can be listed but all must have a different one character label. After all
filters have been listed, there should be an empty line (no empty lines are allowed prior to
thisone), and then a line comaig the Filter String. The Fer Sring is as described in

the sectiorR.3.6above.

2.4.4 graph_gtfs.pl

This program is th command line interface to the Graph function of the Eval package. It
takes a graph file, an annotation set, and one or more prediction sets, creates the graphs

-28-

specified in the graph file, and outputs the data to standard out. It takes the following
arguments:

Graph File A text file specifying the graphs to be made. See below for
format.

Annotation A list file containing the annotatioBTF set.

Prediction1 | A list file containing the first predictioGTF set to be graphed.

Prediction2 | A list file containing the second predicti@TF set to be graphed.

Prediction 2 is optional and can be followed by any number of addti@TF sets to be
graphed.TheGraph Fileis a text file with each line describing a graph to be created.
Each line has the foat: “Y-Level::Y-Type::Y-Stat vs XSplit::X-Level”. Where the Y
terms specify the statistic to be graphed and therixs specify how and at what level to
split the objects into bins.

The program has the following options:

-G Prints all possible valugfor theX-Split, Level, and yaxis to
standard out and exit
-0 Theargumentsare singleGTFfiles rather thattist files.

-r <ResFile> | A text file specifying the location and size of the bins on the x
axis. See below for format.
-h Displays the sage statement and eit

If no ResFileis specifiedwith the— option the users .evalrc file is used. If the user has
no .evalrc file then a default resolution is used.

TheRes File specifies the bins for eachlispype. Each line has the-Zplit type

followed by either “User” or “Uniform”. “User” is used to specify the size and location
of each bin, and should be followed by a series of increasing numbers, which are the
bounds of the bins. The first bin runs from the first number to the settenskcond bin
runs from the second number to the third, and so on. “Uniform” is used to specify a list
of identically sized bins, and should be followed by three numbers. rBhesfihe lower
bound of the lowest bin, the second is the size of eaglabd the third is the number of
bins. All fields in theRes File are separated by a single tab.

2.4.5 get_overlap_stats.pl

This is he command line interface to the Overlap function of the Eval package. It takes
one or more sets @TF files, builds overlap clusters from tharsing the specified

Overlap Modeand reports statistics on the number and composition of each cluster type.
It takes the following arguments:

GTF St 1 A list file containing the firsGTF set.
GTF St 2 A list file containing the secon@TF set.

-29-

GTF St 2is optional and can be followed by any number of addti@TF setsfrom
which to build clusters

The program has the following options:

-m <mode> Sets the overlap mode made, which must bea positive integer
Valid options are listed in the usage statenaent below Default

is 1.
-0 The argumentare singleGTFfiles rather than list files.
-V Turns verbose mode on
-h Displays the usage statement and exit

Overlap Modes:

Transcript Exact Overlap
Transcript Exact Exon Overlap
Transcript 80p Region Overlap
Exon One Base Overlap

Exon 80p Overlap

Transcript Region Overlap
Exon Exact Overlap

Transcript Exact Intron Overlap
Transcript Coding Overlap

10 | Exon 80p Both Overlap

11 | Transcript 80p Both Region Overlap

O ONOO O WDN PP

Overlap Mbdes are described in the secttB.8above.

The output is sent to standard out and is in theedanmat as described in secti®:3.8
above.

2.4.6 get_distribution.pl

This is the command line interface to the Distribution functibtihe Eval package. It
takes a distributiotype the upper bound of the values to be displayed, the size of the
bins which the data should be split into, and onmarre sets oGTF files and outputs the
distribution of the given distribution type ave inputGTFfiles. It takes the following
arguments:

Max Value The highest value to list in the distribution. All value above this
will be placed in a special bin, which goes from this value to
infinity.

Bin Sze The size of the bins in which thatd will be places

GTF &t 1 A list file containing theirst GTF set.

-30-

GTF St 2 A list file containing thesecondGTF set.

GTF St 2 is optional and can be followed by any number of additiGTF setsfor
whichto calculate general statistics

Theprogram has the following options:
-d This displays a list of all valid distribution types

-m <mode> Set the distribution type tmode, which must be a positive integer.
Valid options are listed in the usage statenaent below Default

is 1.
- The agumentsare singleGTFfiles rather thattist files.
-h Displays the usage statement and exits.

Distribution Types:

Transcripts Per Gene
Transcript Length
Transcript Coding Length
Exons Per Transcript
Exon Length

Exon Score

0P WIN -

Theoutput is sent to standard out and is in the same format as when saved to a text file
from the GUI.

-31-

Chapter 3: Code L evel Documentation

3.1 Overview

This chapterdescribes the structure and inner workings of all source code for all
programs andlbraries in the Eval package. A familiarity with the use of the programs
and librariegdescribed in Chapteri2 assumed.

All code waswritten in Perl for several reasons. FiR&rl makes text processing very
easy and dealing with tH&TF files requiresa significant amount of text pogssing.
Second, many bioinformatics scspnd programs are written in Perltgomaking the
libraries Perl librariebioinformatiasts can uséhe libraries data structures and functions
in their code Also, the code isiot exceptionally computationally intensive, so the speed
loss from using Perl instead of a fastaympiled languageke C is not detrimental.
Threeway comparison ofull human genome annotations, comprising over 80,000 genes
and 600,000 exons, takess$ than 30 minutesr a 900MHz Pentium running Red Hat
Linux 7.1 Comparisons between tvi®TF sets containinghousands of genes each take
less than @ seconds on the same machiAe. such the benefits of Perl outweigh

those of faster languages, dPerl was chosen as the implementation language.

3.1.1 Data Types

Below is a list of data pes that variables can tak&hroughout this document aata

types are listed in the sarhent . AlthoughPerl does not have explicit data types, the
documentabn provides them for all variablégcausé¢he code requires that variables are
of a certain type and knowing te&pected type of each variable makes the
documentation and code easier to understdi most general, commonly used data
types are listetbelow. Other, more complex data types are introduced in the sections
which they are used.

array Perl array

ar ef Reference to aar r ay
hash Perl hash

hr ef Reference to Aash

i nt Integer value

fl oat Floating point value
Bool ean | Boolean value

fh Filehandle

fref Reference to a function
pvar Any Perl data type

* A Bool ean is simply an nt which takes
the value of O for false and is otherwise true.

-32-

3.1.2 Naming Schemes

Variable names andfunction names are also displayed in distinctive fortsorder to
identify them and make the documentation easier ta read

Throughout the code a naming scheme is used to identify different types of variables and
functions. Constant values are listed in all capit@l©NSTANT), global variables are

listed with the first letteof each word capitalized>{obal_Variable), local variables and
public functions are listed in all lowercasec@l_var, public_function), and private

functions are preceded by an underscore and listed in all lowergas@aie function).

3.2GTF.pm

3.2.1 Overview

The GTF.pm library contains data structures used to atatgrovide easy accessao

GTF file. Itdefinesfour objectsGTF, GTF: : Gene, GTF: : Transcri pt, and

GTF: : Feat ur e. Since allcode in the Eval package imports the entire GTF.pm library
theGTF: : is not needed sGTF: : Gene, GTF: : Transcri pt andGTIF: : Feat ur e
objects will be referred to &ene, Tr anscri pt andFeat ur e objects. The GTF
objectstoresall data for a singI&TFfile, the Gene objectstoresall data for a single

gene, thdr anscri pt objectstoresall data for a single transcript, and theat ur e
objectstoresall data for a singl&TF feature. A feature is a single line of B&Ffile, a
transcript contains all featugevith the sametranscript_id> and a gene contains all
transcripts with the sam&gene_ic.

TheGene object stores the <segname>, <source>, <strand>, and <gene_id> GTF fields
as well as a list of all transcripts of this gestered agr anscri pt objects The

Transcri pt objects stores the <transcript_id>vesl asalist, for each GTF feature

type (exon, CDS, start_codon, and stop_codaf)all Feat ur e objectsof that type in

this transcript. The Feat ur e object stores the remaining GTF fielgstart, <end>,
<score>, and <frame>) each of which is specific to a single feature.

The standardse of the GTF.pm library is to store in memory and provide easy access to
the data in GTF files. A GTF file is loaded int&aF object by calling the constrigr

with the appropriate arguments (see below). Lists of all genes, transcripts, or coding
exons from the file can then be retrieved as arrays of GTF.pm style dents,

Transcri pt, andFeat ur e). Each of these GTF.pm stybbjects contasifunctions

to retrieve all datassociated witlthem.

All objects defined in the GTF.pm library are Perl style objects. Perl style objects are
essentially jushash objects with fields foeach ofthe object’s global variabéeand
functions. This is abstracted away when using the objdxisthe objectscode does
show these details. In the code dfexlobject, each function has a required first

- 33-

argument which is the object itsel®o, in the code of GTF.pm, all neonstructor

functions take an addition argument, before all other arguments, which is the object the
function is being called on. This argument should never be given when using the
function as it is automatically added by Perl, and, as such, is left out of albfuncti
descriptions below.

3.2.2 GTF Object

The basic function of th&TF object is to parse @TF file, store all data associated with
it, and provide access to that data.

Global Variables

ar ef Genes A reference to aar r ay of Gene objects
representing all genes in thesTF file.

ar ef Transcripts A reference to aarr ay of Tr anscri pt
objects representing all transcripts in {GISF
file.

ar ef CDS A reference to aar r ay of Feat ur e objects
representing all coding exons in tid3 F file.

string | Filename The name of the fildom whichthis GTFwas
loaded

string | Sequence The name of théle containing the genomic
sequence&vhich thisGTF annotates.

string | Conseq The name of the conservation sequence file
corresponding tgeromic sequencthisGTF
annotates.

hash Total _Conseq A hash containing the number of match,

mismatch, and unaligned bases in the
conservation sequence for tldg Ffile. If no
conservation sequence is supplied to the
constructor all counts are set-fio

hash Total_Seq A hash containing the number of A, C, G, T,
and N bases in thgenomic sequence dfis
GTFfile. If nogenomicsequence is supplied to
the constructor all counts are set1o

ar ef Warning_Skips A reference to aar r ay of i nt values whth
areerror indicegnto the list returned by
get_error_messages. Each error indexed by
a value in this arrawill not be reportedvhen
parsing theSTF file.

fh TX A filehandleto whichto write spliced
transcrips when parsing th&TFfile.

-34-

Bool ean | Fix GTF A Bool ean specifying whether or not to

attempt to fix norformat errors in th&TF file,
such as unannotated start or stop codons.
Format errors are automatically fixed when
possible.

Bool ean | Inframe_Stops A Bool ean specifying whether or not to

outputthe <transcript_ic of any transcript
which contaig inframestop codons prior to
the annotatedtop codon.

Bool ean | Modified A Bool ean specifying if the lists of genes,

Constructor

GTF new(hr ef info);

transcripts, and coding exons need to be re
sorted.

Theinfo hash contains the following fields all of which are optional:

gtf_filename

seq_filename

conseq_filename

tx_out_fh

warning_fh

The filename for th&TFfile to be loaded. If this field is

not given an empt®TF object is returned and all other
fieldsin info will have no effect.

A file containingthe genomicsequencevhich this GTF file
annotates If given eachFeat ur e object in theGTF will

know the number of A, C, G, T, and N bases in its sequence.
Also theGTF file is checked to ensure that the start and stop
codons andgice sites have correct sequence. This field has
no effect unless thgtf filename field is given.

A file containingthe conservation sequence corresponding
to the genomisequenceavhichthis GTF file annotates If

given eachFeat ur e object created wilknow the number

of match, mismatch, and unaligned bases inatsservation
sequence. This field has no effect unlesgthdilename

field is given.

A filehandle to whicho write allspliced transcrigt This

field has o effect unless thgtf _filename andseq_filename
fields aregiven.

A filehandle to which all errors and warnings generated
while parsing th&TF file are written If seq_filename is

given, errors and warnisgound while checking th&TF

file against the sequence are also writtemaining_fh.

This field has no effect unless tgi filename field is given.

The constructor parses the data initifie hash into global variable. If thgtf filename
field is given it loads the specifieddiwith the_parse_gtf function, otherwise it
returns an empt@TF object.

-35-

Accessor Functions

ar ef genes()
This function returns a reference toar ay of Gene objects(Genes), corresponding
to all genes in thi&STF file, sorted in increasing ordef their start value.

ar ef transcripts()
This function returns a reference toar ay of Transcri pt objects(Transcripts),
corresponding to all transcripts of all genes in @ilg- file, sorted in increasing order
of their start value.

ar ef cds()
This functon returns a reference to anr ay of CDS typeFeat ur e objects(CDS),
corresponding to atoding exonsn all trarscripts in all genes in thiSTF object
sorted in increasing ordef their start value

stri ng filename()
Returns the name of the GTFefithat was loaded into thi3T'F object Eilename). If
this GTF was not loaded from a file it will return an emptyr i ng. The value
returned can be changed with 8et_filename function.

hr ef conservation_count()
Returns a reference tchash containirg fields “0”, “1”, and “2” (Total_Seq). Each
field contains the number of times that symbol appeared in the conservation sequence
of the genomic sequence which tliEF annotates. If the conservation sequence was
not loaded when the object was creatéd@lnts are returned as.

hr ef sequence_count()
Returns a reference tchash containing fields “A”, “C”, “G”, “T”, and “N”
(Total_Conseq). Each field contains the number of times that symbol appeared in the
genomic sequence which tf&@F annotatesIf the sequence was not loaded when the
object was created all counts are returned.as

voi d output_gtf_file(f h filehandle)
Writes the data stored in th& F object tofilehandle in GTF format. Iffilehandle is
notgiven the data is written to stamdabut.

voi d output_gff_file(f h filehandle)
Writes the data stored in tHi&H F object tofilehandle in GFFformat. Iffilehandle is
notgiven the data is written to standard out.

ar ef get_error_messages()
Returns a list of error messages used by ffagse_gtf function.

- 36-

M odifier Functions

voi d add_gene(Gene gene)
This functoninsertsgene into the Ist of Gene objectsstored by thisGTF object
(Genes).

voi d set_genes(ar ef genes)
genes | A reference toraar r ay of Gene objects
This sets the list cdBene objecs stoed by thisGTF object(Genes) to genes. All genes
that were previously stored will be forgotten.

i nt remove_gene(st ri ng gene_id)
This function removes any gene wheggeneid> is gene_id from the list of genes
stored by thi$GTF (Genes). It returns the number of genes it removed, which should
always be 0 or 1.

voi d set_filename(st r i ng filename)
This function sets the value returned byfilame function(Filename) to filename.

voi d offset(i nt offset)
This function changes the positiof every feature of evetyanscript of every gene
stored by thi$GTF objectby addingoffset to it.

voi d reverse_complement(i nt length)
This function takeshe length of the sequenttes GTF file contains annotation fand
reverse complements everyiy in the file. The positive strand becomes the negative
strand and all positionp, becomdength - p. It dso updates the counts of each base
returned by theequence_count function.

I nter nal Functions

voi d _parse_gtf(f h filehandle)
This parses th&TF file passed to the constructor, reports any errors or warnings to
filehandle and creates altene, Tr anscri pt, andFeat ur e objects neegdto store
the informationin the file. Thefilehandle parameter is optional and if it is not given
errors andvamings are not reported.

voi d _rev_comp(st ri ng string)
string | AstringofA, C,G,T,andN characters
This functionreturns theeverse complemeiaf string.

voi d _update()
This functionre-sort the lists of genes, transcripts, and features of3Hisobject It
is called before returning any of the lists but does nothing unlesatdiéed bit has
been set by thadd_gene orset_genes functions. Only resorting the lists before

-37-

they are returned saves time over keeping the lists in the correciab@l times since
the lists are stored as simpler ay objects and would otherwise need to beaoeed
each time a new item it inserted into them..

3.2.3 Gene Object

This object stores all data for a single gene. Each dgeetstores thegene ic,
<strand, <source>, and<segname fields from theGTF specification. These data are
stored in theGene object because they are the same for all transcriptgigéagene.
All data from other fields are stored in theanscr i pt orFeat ur e object Each
gene also antains a list of altranscriptswvhichit contains.

Global Variables

string | Id The <gene_id»f this gene.

string Segname The <segname> of this gene.

string | Source The <source> of this gene.

string | Srand The<strand> of this gene.

ar ef Transcripts A reference to aar r ay of Transcri pt objects

containing one object for each transcript of tese.

pvar Tag The value stored by theet _tag function.

Constructor

Gene new(st ri ng gene_id, st ri ng segname, st ri ng source, st ri ng strand)
The constructor arguments contain data which specify the field of the same name in the
GTF specification. Thetrand value must be “+”,%*, or “.”. The other three can be
any string which contains no whitespace or “#” charactéhge constructor returns a

Gene object containing no transcripts.

Accessor Functions

stringid()
Returnshe<gene_id of this gendld).

st ri ng segname()
Returns the <seqname> field for this gé8sname).

string source()
Returns the <source> fiefdr this gengSource).

i nt start()
Returns the lowest start value of any transcript of this gene.

- 38-

i nt stop()
Returns the highest stop value of any transcript of this gene.

f | oat length()
Returns thdéength from the 5’ most coordinate of any of its senpts to the 3' most
coordinate of any of its transcripts.

st ri ng strand()
Returnsthe<strand- field of this gengStrand).

ar ef transcripts()
Returns a reference to anr ay of Tr anscri pt objects(Transcripts) containing all
transcripts of this gene

ar ef cds()
Returns a reference to anr ay of all CDS typeFeat ur e objects from anyranscript
of this gene.

voi d output_gtf(f h filehandle)
Outputs each transcript of this genéaimF format tofilehandle.

voi d output_gff(f h filehandle)
Outputs eachrainscript of this gene iBFFformat tofilehandle.

Bool ean equals(Gene compare)
Comparegompare to this gene and returns truedmpare and this gene have exactly
the same transcripts as each o#na returns false otherwise. Transcripts are
comparedising theequals function of theTr anscri pt object. The <gene_id> and
<transcript_id> fields are ignored in this comparison.

f | oat gc_percentage()
Returns the average GC percentage of all transcripts of thisagetetermined by the
gc_percentage functon of theTr anscri pt object

f | oat match_percentage()
Returns the average match percentage of all transcripts of thiggemas determined
by thematch_percentage function of thelTr anscri pt object

f | oat mismatch_percentage()

Returns the average miaitgh percentage of all transcripts of this ggeee as
determined by thenismatch_percentage function of thelr anscri pt object

- 39-

f | oat unaligned_percentage()
Returns the average unaligned percentage of all transcripts of thigegenas
determined by thunaligned_percentage function of theTr anscri pt object

pvar tag()
Returns the tag valu@ag) as set by theet_tag function. If no tag has been sit

returns Perl’s undefinedalue.
Modifier Functions

voi d add_transcript(Tr anscr i pt transcript)
Addstranscript to the list of transcripts dhis gengTranscripts). Also sets th&ene
field of transcript to be thisGene object.

voi d set_segname(st r i ng segname)
Sets thecsegname field for this gendSegname) to segname.

voi d set_source(st ri ng source)
Sets the<source field for this gendSource) to source.

voi d offset(i nt offset)
Movesthe position okach transcript of this gene bifset bases.

voi d reverse_complement(i nt length)
Reverse complements each transcript in this gene given thegghence the geneds
has lengthength.

voi d set_tag(pvar tag)
Sets the tag valudag) to be returned by thiag function totag.

3.2.4 Transcript Object

This object stores the data specific to a single transcripe. trfanscript must be part of a
Gene to retrieve it<strand>, <source>, <seqname, or<gene_ic¢. Tr anscri pt
objects are not intended to be used alone and should always be péasinef abject.
TheTr anscri pt object stores thetranscript_ic field and for eat of the four GTF
feature typegexon, CDS, startodon and stop_codongnar r ay of Feat ur e objects
each of which contains all features of that type of a transcript

Global Variables

-40-

string
ar ef

ar ef

ar ef

ar ef

ar ef

Gene
i nt
i nt
i nt
i nt
i nt

Bool ean

pvar

Id
Exons

CDS

Introns

Sarts

Sops

Gene

Sart

Sop
Coding_Start
Coding_Stop
Coding_Length

Modified

Tag

The<transcript_id of this transcript.

A reference to aar r ay of exon type
Feat ur e objects containing all exons of
this transcript.

A reference to aar r ay of CDS type

Feat ur e objects containing all coding
exons of this transcript.

A reference to aar r ay of intron ype
Feat ur e objects containing all introns of
this transcript. The value of this variable is
not calculated until the it is requested by
calling theintrons function.

A reference to aar r ay of start_codon
typeFeat ur e objects containg thestart
codonof this transcript.The start codon is
normally contained in a singkeeat ur e
object but is potentially split into two or
threeFeat ur e objects.

A reference to aar r ay of stop_codon
typeFeat ur e objects containing the stop
codonof this transcript. The stop codon is
normally contained in a singkeeat ur e
object but is potentially split into two or
threeFeat ur e objects.

The Gene objectto which this transcript
belongs

The lowesstart valueof any feature othis
transcript.

The highesstop valueof any feature of this
transcript.

The lowest start valuef any coding exon
of this transcript.

The highest stop valugf any coding exon
of this transcript.

The sum of the lengths of all coding exons
of this transcript.

A Bool ean specifying if changes have
been madé&o any of the feature lists
indicating that they need to beserted and
that some variableSiart, Stop,
Coding_Start, Coding_Stop,

Coding_Length, andintrons) must be
recalculated.

The value stored by theet tag function.

-41-

Constructor

Transcri pt new(stringid)
The constructor takes a single argument which is the <transcript_id> for this transcript.
The «ranscript_id> should be a string containing no whitespace, quote, or “#”
characters, as stated in the GTF specification. It retufngascri pt object
containing no features and belonging toGeme.

Accessor Functions

ar ef exons()
Returns a referende anar r ay of all exon typeFeat ur e objects of thigranscript
sorted by increasing starélue (Exons).

ar ef cds()
Returns a reference to anr ay of all CDS typeFeat ur e objects of thigranscript
sorted by increasing staralue (CDS).

Feat ur e initial_exon()
If this transcript has a start codon, this function return&theostcoding exon of this
transcript, otherwise it returns 0.

Feat ur e terminal_exon()
If this transcript has a stop codon, this function returas3t mostcoding exon of this
transcript, otherwise it returns 0.

ar ef introns()
Returns a reference to anr ay of all introntypeFeat ur e objectssorted by
increasing stantalue(Introns). Each feature corresponds to an intron of this transcript.
Introns are not stored explicitly the GTF file but theTr anscr i pt objectcalculates
them and builds Reat ur e object for each one.

ar ef start_codons()
Returns a reference to anr ay of all start_codon typ&eat ur e objects othis
transcriptsorted by increasing staralue (Starts).

ar ef stop_codons()
Returns a reference to anr ay of all stop_codon typ&eat ur e objects of this
transcriptsorted by increasing starélue (Siops).

stringid()
Returns the <transcript_id> of this transcrijpf (

-42-

stringgene_id()
Returns the <gené&d> of theGene object b which this transcript belongs. This value
is retrieved from th€ene object to which this transcript belongs.

Gene gene()
Returns th&ene object to which this transcript belondsefe).

st ri ng segname()
Returns th&>TF <seqame> field of this transcript This value is retrieved from the
Gene object to which this transcript belongs.

st ri ng source()
Returns th&5TF <source> field of this transcript This value is retrieved from the

Gene object to which this transcript belgs

nt start()
Returns the lowest staralueof any feature of this transcriffitart).

nt stop()
Returns the highest steplueof any feature of this transcrigop).

nt length()
Returns the length of the transcript from the start to the stop.

nt coding_start()
Returns the lowest staralueof any coding exon of this transcrif@@oding_Sart).

nt coding_stop()
Returns the highest steplueof any coding exon of this transcrif@@oding_Stop).

nt coding_length()
Returns the sum of the leihgdf all coding exons of this transcrif@@oding_Length).

st ri ng strand()
Returns the GTF <strand> field of this transcript. This value is retrieved from the

Gene object to which this transcript belongs.

f | oat score()
Returns the sum of the score ofradinintron features of this transcriptSince introns
are not explicitly stored in GTF they have no score.

voi d output_gtf(f h filehandle)
Outputs all features of this transcripffit@handle in GTF format.

-43-

voi d output_gff(f h filehandle)
Outputs all fatures of this transcript fdehandle in GFFformat.

Bool ean equals(Tr anscri pt compare)
Comparesompare to this transcript and returns true if this transcript @rdpare have
exactly the same features and returns false otherwise. Features are darsipgréhe
equals function of theFeat ur e object. The <transcript_id> and <gene_id> fields are
ignored in this comparison.

Transcri pt copy()
Returns a newr anscri pt object, with this ofect’s transcriptd, containing copies
of all Feat ur e objects of histranscript The copy is not associated with agne
object and should be added tG@ne object before being used.

fl oat gc_percentage()
Returns the GC percentage of genomicsequence of atllon-intron features of this
transcript.

fl oat match_percentage()
Returns the match percentage of tbaservatiorsequence of atlorrintron features of
this transcript.

fl oat mismatch_percentage()
Returns the mismatch percentage ofdbeservatiorsequence of allorrintron
features of this transcript.

fl oat unaligned_percentage()
Returns the unaligned percentage ofdbieservatiorsequence of afiorrintron
features of this transcript.

pvar tag()
Returns the tag valu@ag) as set using theet_tag function. If no tag has been skt

returnsPerl’sundefined value.
Modifier Functions

voi d add_feature(Feat ur e feature)
Adds feature to the proper listExons, CDS Sart_Codons, or Sop_Codons) of
Feat ur e objectsstored by thidr anscri pt .

i nt remove_exon(i nt position)
This function removes adixon ty Feat ur e objects stored by thibr anscri pt
(Exons) whose start values position and returnghe number of features removed,
which should always be 0 or 1.

-44-

i nt remove_cds(i nt position)
This function removes alDS typeFeat ur e objects stored by thibr anscri pt
(CDS) whose start value gosition and returnshe number of features removed, which
should always be 0 or 1.

voi d offset(i nt offset)
This function changes the position of every feature of this transcript by aufthetgo
it.

voi d reverse_complement(i nt length)
This function reverse complements the transgiy¢n that the length of the sequence
that the transcrigs onis length. The positive strand becomes the negative strand and
all positions p, becomdength - p. It dso updates theotints of each base stored in
eachFeat ur e object of this transcript.

voi d set_tag(pvar tag)
Sets the value returned by ttagy function(Tag) to tag.

I nter nal Functions

voi d _update()
This function sorts the lists ¢feat ur e objects, calculates the iofrs, start, stop,
coding start, coding stop, coding lengali of which are stored in global variahles
This is called before returning any listledéat ur e objects but only runs if some
modifier function has set thdodified bit since the last timeupdate was run. Only
running these calculations when they are needed saves time over recalculating them
each time a new feature is added.

aref _all_features()
This function returns a reference toar ay of all nonintron Feat ur e objects of
this transcriptsorted by increasingtartcoordinate.

voi d _set_gene(Gene gene)

This function setgene as theGene object associated with this transcri@ene). This
function is used by thadd_transcript function of theGene object.

-45-

3.2.5 Feature Object

This object stores the data specific to a single feature (linesoile. The<feature>
<start, <end>, <score>, and<frame> fields are stored in this object. Edébat ur e
should be part of @r anscri pt, which in turn,should bepart of aGene. Feat ure
objects are not meant to be used outside of this hierarchy<trEmscript_id field can
be retrieved from th&r anscri pt whichcontains this featurand the<source,
<seqgname, <stranc>, and<gene_id& can be retrieved from ti&ne which contains the
transcript which containthis feature

Global Variables

string Type The <feature> field ofhis fedure. This must be
“exon”, “CDS’, “start_codon”, “stop_codon”, or
“intron”. This is the <feature> field from the
GTF specificéon.

| nt Sart The<start> fieldof this feature.

| nt End The<end> fieldof this feature.

fl oat Score The<score field of this feature.

string Frame The<frame> field of this feature.

string Subtype The subtype of this feature. This is only uéed

CDStypefeatures and should Bénitial”,
“Internal”, “Terminal”, or “Single’

Bool ean Sq A Bool ean specifying if thecounts ofA, C, G,
T, and Nbases in the genomic sequence of this
featurehave been set.

Bool ean Conseq A Bool ean specifying if hecounts ofmatch,
mismatch, and unaligndzhsesn the
conservation sequence this featurénave been
set.

fl oat GC The percentage of bases in genomicsequence
of this feature which are G or C. This is
calculated and stored the first time
get_gc_percentage is called. A value of-1
indicatesthatthe A, C, G, T, and N counts have
not yet been set

fl oat Match The percentage of match bases in the
conservation sequence of this feature. This is
calculated and stored the first time
get_match_percentage is called. A value of-1
indicatesthatthe match, mismatch, and unaligned
counts have not yet been set.

-46-

fl oat

fl oat

I nt

I nt

I nt

I nt

I nt

I nt

I nt

I nt

Pvar

Constructor

Mismatch

Unaligned

Tag

The percentage of mismatch bases in the
conservation sequence of this feature. This is
calculated and stored the first time
get_mismatch_percentage is called. A value
of -1 indicates that the match, mismatch, and
unaligned counts have not yet been set.

The percentage of unaligned bases in the
conservation sequence of this feature. This is
calculated and stored tfiest time
get_unaligned_percentage is called. A value
of -1 indicates that the match, mismatch, and
unaligned counts have not yet been set.

The number of mismatch bases in this feature
conservation sequencé value of-1 indicates
that this coaint has not yet been set.

The number of match bases in this fedture
conservation sequencé value of-1 indicates
that this count has not yet been set.

The number of unaligned bases in this feature
conservation sequencé value of-1 indicates
that this count has not yet been set.

The number of A bases in this feafigrgenomic
sequenceA value of-1 indicates that this count
has not yet been set.

The number of C bases in this featsigenomic
sequenceA value of-1 indicates that this count
has not yet been set.

The number of G bases in this featsmgenomic
sequenceA value of-1 indicates that this count
has not yet been set.

The number of T bases in this featsrgenomic
sequenceA value of-1 indicates that this count
has not yet been set.

The number of N bases in this featsrgenomic
sequenceA value of-1 indicates that this count
has not yet been set.

The value stored by trset_tag function.

Feat ur e new(stri ng type i nt start,i nt end, f | oat score, st ri ng frame)

The constructor takes five arguments which correspond to the field of the same name in
Thgpe argument must be one of “exon”, “CDS”,
stop_codon”, or “inbn”. Thestart andend arguments are positive

the GTF specification.
“start_codon

integers corresponding to the boundaries of the featurgtamanust be the lower of

the two. Thdrame value must be “0”, “1”, “2”, or “.”. The constructor returns a

-47-

Feat ur e object that does not belonganyTr anscri pt . The user should use the
add_feature function of theTr anscri pt object to add this feature to a transcript.

Accessor Functions

string type()
Returns thefeature>field for this object(Type).

st ri ng subtype()
This function is only vadl for CDStypeFeat ur e objects. It returns eithétnitial”,
“Internafl, “Terminal, or “Singl€’ depending on theultype of the CDYSubtype),
which is determined by the transcrpliich contains this feature. If this is the only
CDS inthis transcriptthen “Single”is returned.If the transcript has a start asdand
multiple exonsand this is the most 5° CDSnitial” is returned, and if the transcript
has a stop cah and multiple exonand this is the most 3’ CDSTerminal” is
returned. In albther cases “Internal’s returned.

st ri ng transcript_id()
Returns thetranscript_id of the transcripto which this feature belongs

Transcri pt transcript()
ReturngheTr anscri pt object to which this feature belon@anscript).

stringgene_id()
Reurns the<gene_ic of theGene objectwhich contains this feature.

Gene gene()
Returns th&ene objectwhich contains this feature.

st ri ng segname()
Returns thecsegname field for this feature.This value is retrieved from the gene
which contains thigeature.

string source()
Returns the<source field for this feature.This value is retrieved from the gene which
contains this feature.

i nt start()
Returns the <start> field of this featufaft).

i nt stop()
Returns the <end> field of this featuiend).

-48-

i nt end()
Same as the stop function abofzad).

i nt length()
Returns the length of this feature from <start> to <end>.

f | oat score()
Returns the <score> field of this featugedte).

string frame()
Returns the <frame> field of this featufe &me).

st ri ng strand()
Returns thecstrand field of this feature.This value is retrieved from the gene which
contains this feature.

Bool ean equals(Feat ur e compare)
Comparegompare to this feature and returns true if this feature @ordpare have the
same <start>, <stop>, <stand>, and <feature> fields and returns false otherwise.

Feat ur e copy()
Returns a neweat ur e object with the same <start>, <end>, <score>, <frame>,
<feature>, base counts and conservation counts as this object.

voi d output_gtf(f h filehandle)
Outputs a single line describing this featur&inF format tofilehandle.

voi d output_gff(f h filehandle)
Outputs a singlane describing this feature in GFérmat tofilehandle.

f | oat gc_percentage()
Returns th&5C percentage of thgenanic sequence of this featu(€C).

f | oat match_percentage()
Returns the match percentage of the conservation sequence of this(fdataing

f | oat mismatch_percentage()
Returns the mismatch percentage of the conservation sequence of this feature
(Mismatch).

f | oat unaligned_percentage()
Returns the unaligned percentage of the conservation sequence of this feature
(Unaligned).

-49-

i nt get_a_count()
Returns the number of Aases irthegenomicsequence of this featu(a).

nt get_c_count()
Returns the numér of Cbhases irthegenomicsequence of this featu(€).

i nt get_g_count()
Returns the number of @ases irthegenomicsequence of this featu(é).

nt get_t_count()
Returns the number of Bases irthegenomicsequence of this featu(e€).

i nt get_n_count()
Retrns the number of Hases irthegenomicsequence of this featu(d).

i nt get_match_count()
Returns the number afiatchbases in the conservation sequeoicthis featurgl).

i nt get_mismatch_count()
Returns the number afismatchbasesn the conservation sequenaiethis featurg0).

nt get_unaligned_count()
Returns the number ohalignedbases in the conservation sequeoicthis featurg?2).

pvar tag()
Returns the tag valuy@ag) as set using theet_tag function. If no tag has lea setit

returns Perl’'s undefinedhlue.
M odifier Functions

voi d set_subtype(st r i ng subtype)
Sets the subtype of this featufeilftype) to subtype.

voi d set_start(i nt start)
Sets the <start> of this featui@dft) to start.

voi d set_stop(i nt stop)
Sets the <end> of this featui®dp) to stop.

voi d set_frame(st ri ng frame)
Sets the <frame> of this featuferéme) to frame.

voi d set_bases(i nt a_count,i nt c_count, i nt g_count,i nt t count,i nt n_count)
Sets the counts of each bas¢his feature’genomic sequend@d, C, G, T, N).

-50-

voi d set_conseq(i nt match_count, i nt mismatch_count, i nt unaligned_count)
Sets the counts of each conservabase in this feature’s conservation sequéfgcg,
2).

voi d offset(i nt offset)
This function addsffset to the <start- and<send>fields (Sart andEnd) of this
feature.

voi d reverse_complement(i nt length)
This function takes the length of the sequence that this feature is on and reverse
complements the feature. The positive strand becomes the negativeasttaaiid
positions,p, becomdength - p. It also updates the counts of each base stored by this
feautre.

voi d set_tag(pvar tag)
Sets the value to be returned by thg function(Tag) to tag.

3.3 Eval.pm

The Eval.pm library provides a set of ftioos to compute statistics anset ofGTF

objects or compare two or more set$0F objects to each othehere are six main
functions: Evaluate, General Statistics, Graph, Filter, Overlap, etagbDtion. Each is
described below. Most use a common set of statistics which are also described below.

All main Eval functions tak&TF_set objects as parameters. GXF_set is a data
structure used to stoeeGTFset Each GTF file in the set is loaded intGHF object
and stored in aar r ay in the same position as the file occurs in the GTF set. A
reference to thiar r ay is called aGTF_set object. GTF_set objectsmaycontain
only a singleGTF object.

Several of the furtions of the Eval library take, as inpobjects that can be any of the
following: Gene, Transcri pt, orFeat ur e. A parameter of this type will be called a
GTF_obj object.

3.3.1 Definition of Statistics

Most top-level functions use the same set of statisticsta@dame subroutines fGTF
comparison and analysis. This allows new statistics to be added by making only one
change to the initialization of the data structures and adding codeappfapriate
comparison function to compute the new statistic. Statistics are organized into three
levels, which from mogieneral to most specific are: Level, Type, and. Shatetailed
description of how the statistics are organized into Levels, TgpesStats as well as a
description of kindividual Levels, Types, and Statan be foundan Chapter 2.

-51-

All statistics computed are stored istat s_st r uct , which is ahash with a field for
each level, each of which poistto ahash containing fields for each Type of that Level,
which in turn point tdhash objecs with fields for each Stdor thisLevel, each of whib
contains the value for this Level/Type/Stat combination

Top-level Statistics Functions

arr ay get_level_list()
Returns arar r ay of st ri ng valuescontainng the name of eachelvel.

hash get_list_struct()
Returns @ash with a field for eachLevel indexed by the Levels nanend a field
“Level’ which points toanar r ay containing the name of eatkvelsasastri ng.
Each level's field points toahash with two fields: “Type”, which is a list ofall
Types of this Level, and 18t” which is a list of all &ts for this Level This function
is used to get a suggested ordering for reporting the statisticsafbat s_str uct .

hash get_general_list_struct()
Returns @ash similar to that ofjet_list_struct, but the “Sat” fields contain only
GeneralStats

stats_struct get_stats_struct()
Returns ast at s_st r uct with all Stas set to O.

Gene Level Statistics Functions

arr ay get_gene_type_list()
Returns arar r ay of all Gene Level Types.

arr ay get_gene_stat_list()
Returnsanar r ay of all Gene Level Stas.

arr ay get_gene_general_stat_list()
Returnsanar r ay of all Gene Level General Stat

arr ay get_gene_stat_type_list()
Returnsanar r ay of all Gene Level Comparison Stafypes.

arr ay get_gene_substat_list()
Returnsanar r ay of all Gene Level Substat

-52-

hash _get_gene_type_hash()
Returns @ash containng a field for eaclGene Level Type Each field is initiaked
to 0.

hash _get _gene_stat_hash()
Returns @ash contairing a field for eaclGene Level Stat Each field is initialized to
0.

hash _get _gene_type_struct()
Returns @ash cortaining a field for eacksene Level Type Each field points to a
hash contaning the result®f _get_gene_stat_hash().

Transcript Level Statistics Functions

ar r ay get_transcript_type_list()
Returnsan array of allfranscript Level Types.

ar r ay get_transcript_stat_list()
Returnsanar r ay of all Transcript Level Stas.

ar r ay get_transcript_general_stat_list()
Returnsanar r ay of dl Transcript Level General Stat

ar r ay get_transcript_stat_type_list()
Returnsanar r ay of all Transcript Level Comparison Stafypes.

ar r ay get_transcript_substat_list()
Returnsanar r ay of all Transcript Level Subshts.

hash _get_transcript_type hash()
Returns @ash containirg a field for eaciranscript Level Type Each field is
initialized to O.

hash _get_transcript_stat_hash()
Returns @ash containirg a field for eacfiranscript Level Stat Each field is
initialized to 0.

hash _get_transcript_type_struct()

Returns @ash containirg a field for eaciranscript Level Type Each field points to
ahash containing the results ofget_transcript_stat_hash().

- 53-

Exon Level Statistics Functions

ar r ay get_exon_type_list()
Reurns arar r ay of all Exon Level Types.

arr ay get_exon_stat_list()
Returns arar r ay of all Exon Level Stas.

arr ay get_exon_general_stat_list()
Returrs anar r ay of all Exon LevelGeneral Stat

arr ay get_exon_stat_type_list()
Returns arar r ay of all Exon LevelComparison Stat Types

arr ay get_exon_substat_list()
Returns a ar r ay of all Exon Level Substas.

hash _get_exon_type hash()
Returns @ash cortaining a field for eackxon Level Type Each field is initialized
to 0.

hash _get _exon_stat hash()
Returns @ash containng a field for eacliexon Level Stat Each field is initialized to
0.

hash _get_exon_type_struct()

Returns @ash cortaining a field for eackxon Level Type Each field points to a
hash containing the mults of_get_exon_stat_hash().

Nuc L evel Statistics Functions

arr ay get_nuc_type_list()
Reurns amar r ay of all Nuc Level Type.

array get_nuc_stat_list()
Returns arar r ay of all Nuc Level Stas.

arr ay get_nuc_general_stat_list()
Retuns anar r ay of dl Nuc LevelGeneral Stat

array get_nuc_stat_type_list()
Returnsanar r ay of all Nuc LevelComparison Stat Types

-54-

arr ay get_nuc_substat_list()
Returnsanar r ay of all Nuc Level Substas.

hash _get_nuc_type_hash()
Returns @ash contaning a field foreachNuc Level Type Each field is initialized to
0.

hash _get_nuc_stat hash()
Returns @ash contaning a field for eaciNuc Level Stat Each field is initialized to
0.

hash _get nuc_type_struct()
Returns @ash contaning a field for eaciNuc Level Type Each field points to a hash
containing the results ofget_nuc_stat_hash();

Signal Level Statistics Functions

ar r ay get_signal_type_list()
Returnsanar r ay of all Sgnal Level Types.

ar r ay get_signal_stat_list()
Returnsanar r ay of all Sgnal Levd Stas.

ar r ay get_signal_general_stat_list()
Returnsanar r ay of all Sgnal Level Geneal Stat.

arr ay get_signal_stat_type_list()
Returnsanar r ay of all Sgnal LevelComparison Stat Types

ar r ay get_signal_substat_list()
Returnsanar r ay of all Sgnal Level Substad.

hash _get_signal_type hash()
Returns @ash contdning a field for eacldgnal Level Type Each field is initialized
to O.

hash _get_signal_stat _hash()
Returns @ash containirg a field for eaclsignal LevelStat Each field is initilized
to 0.

hash _get_signal_type_struct()

Returns @ash containing a field for eacltignal Level Type Each field points to a
hash containing the results ofget_signal_stat_hash().

-55-

3.3.2 Evaluate Functions

ar r ay evaluate(GTF_set ann, ar ef preds, Bool ean verbose)

ann A GTF_set objectcontaining the annotanh GTF set.

pred An ar r ay of GTF_set object containing prediabn GTF sets

verbose | Setsthe verbose mode on or off. This is an oml@argument with

default védue false

Returns arar r ay of st at s_struct objectswhere the firsitem corresponds to the
annotatiorset,ann, and the rest correspond to the predictesin pred and occuin
the same order as the input.

The Bvaluation function is used to comu@ one or more predictigBlF_set objects

to anannotationGTF_set object. The firstGTF in the annotabn setis compared to
the firstGTF in each predictioset the secon&TF in theannotatiorset is compared
to the secondGTF in eachpredictionset and so on. Statistics are calculated for each
comparison and totaled, for éagrediction list, over eadBTF in that list.

Comparisons are done using twnpare_gene_lists function which, in turn uses
the_compare_object_list function. Annotationtatistics are generated using the
_get_stats function described in the sectiBr8.3below.

List Comparison Functions

voi d compare_gene_lists(ar ef anns, ar ef preds, st at s_struct data)
anns | A reference to aar r ay of annotatiorGene objects. Thigar r ay
must be sorted by increasing start position.
preds | A reference to aar r ay of predictionGene objects. Thisar r ay
must be sorted by increasing start position.
data The results of the comparisare returnedh data, which should have
all value initializel to zero before to being passed to this function.
Thisfunction compares the gene aahsto the gene sgireds and increments the
appropriate counts idata by calling the_ compare_object_list function with the
appropriate function pointers.

voi d compare_tx_lists(ar ef anns, ar ef preds, st ats_struct data)
anns A reference to aar r ay of annotationTr anscri pt objects. This
ar r ay must be sorted by increasing start position.
preds | A reference to aar r ay of predictionTr anscri pt objects. This
ar r ay mustbe sorted by increasing start position.
data The results of the comparisare returned idata, which should have
all value initialized to zero before to being passed to this function,
This function compares the transcript aes to the transcript $greds and increments
the appropriate counts data by calling the compare_object_list function with the
appropriate function pointers.

- 56-

voi d compare_exon_lists(ar ef anns, ar ef preds, stats_struct data)
anns A reference to aar r ay of annotatiorfFeat ur e objects. This
ar r ay must be sorted by increasing start position.
preds | A reference to aar r ay of predictionFeat ur e objects. This
ar r ay must be sorted by increasing start position.
data The results of the comparisare returned ilata, which shouldchave
all value initialized to zero before to being passed to this function,
This function compares the exon aahs to the exon sqireds and increments the
appropriate counts idata by calling the_ compare_object_list function with the
appropriate fuation pointers.

voi d _compare_object_lists(ar ef anns, ar ef preds, st ats_struct data, f r ef
init_func, f r ef clear_func, f r ef compare func, f r ef collect_func, f r ef
ann_collect_func)

anns A reference to aar r ay of annotatiorGTF_obj objects
Thisar r ay mustbe sorted by increasing start position.

Preds A reference to aar r ay of predictionGTF_obj objects
Thisar r ay must be sorted by increasing start position.

Data A reference to at at s_st ruct in which the results of
the comparison are stored.

init_func A reference to a function which takesingleGTF_obj ,
from anns or preds, andinitializes its tag

clear_func A reference to a function which takesingleGTF_obj ,

from anns or preds, and clears its tag (frees the memory)
compare_func A referene to a function which takesGTF_obj from
annsand aGTF_obj from preds (in that order), compares
the objects and stores the results of the comparison in the
objects’ tags
collect_func A reference to a functiowhich takesa singleGTF_obj
from preds with a filled-in tag and &t at s_st ruct and
copiesthe information from the taigto the
stats_struct.
ann_collect_func | A reference to a functiowhich takesa singleGTF_obj
from anns with a filled-in tag and &t at s_st ruct and
copiesthe information fronthe tagnto the
stats_struct.
This is the main function used to compare séSTé-_obj objects It moves through
the sorted list of prediction objects, comparing each to all annotation objects which
overlap it. The first time ikomparesny objecttiinitializes that objecttag value
using thenit_func parameter. Once the object will no longer be used in any
comparison (for prediction objects this means it has moved amtparisons
involving the next predictiombjectand for annotation objectkis means that the
current predictiorbjectbegins after the annotation object ends) the data from the
objects tag is sed to increment the valuesdata usingthe collect_func and

-57-

ann_collect_func parameters, anég value is cleared with tloeear_func, freeing the
memory.

The tag is used tiemporarilystore the data from comparisansolving the object

which the tag is on. This donebecause if a single object matches in some way to

more than one other object it shouldyobe counted as a sirgginatch, s the results of
comparisons must be stored until all comparisons of this object are confpbete.

example if a single prediction object overlaps twoaation objects it should be

counted as one prediction overlap, and two annotation overlfihe fact that the

prediction object already overlapped an annotation is not stored, then each overlap will
be counted and a potential exists to have a prediction overlap count that is greater than
the total number of predictions.

A valid tag is one tthe format returned by the appropriget_exon_tag,
get_transcript_tag, orget_gene_tag function for the Level of object it is on. A
filled in tag is a valid tag with all values set to the appropriate value for the object
whichit is on.

Object Comparison Functions

voi d _compare_genes(Gene a_gene, Gene p_gene)
This function is used to compare t@ene objects. This compares all overlapping
transcripts of the geseisingthe_compare_txs function. The results of the
comparisons are stored in the atg tags, s@ach ofthe objectstags must have been
properly initialized using theinit_gene_tag function prior to calling
_compare_genes.

voi d _compare_txs(Tr anscri pt a tx, Transcri pt p_tx)
This function is used to compare tWoanscri pt objects It compares all
overlapping coding exons aadl overlappingntrons of the twdl'r anscri pt objects
using the compare_features function. The results of the comparisons are stored in
the objects’ tags. The tag values for @ane objectsthata tx andp_tx belong to are
alsoupdated. The tags pf tx anda _tx as well as those of tiigene objectsthey
belong to must have been initializeging_init_tx_tag and_init_gene_tag
respectivelyprior to calling_compare_txs.

voi d _compare_features(Feat ur e a_feature, Feat ur e p_feature)
This function is used to compare t@®S or intron typd-eat ur e objects. The
results of the comparison are stonedhe objects’ tags. The tags must have been
initialized using the init_exon_tag or _init_intron_tag function pror to calling
_compare_features.

- 58-

Initialization and Clean up Functions

hash _get _gene tag()
Returnsatag data structure for@Gne object with all fields initialized to 0.

hash _get_tx_tag()
Returnsatag data structure fora anscri pt object withall fields initialized to 0.

hash _get_exon_tag()
Returnsatag data structure for@DSor introntypeFeat ur e object with all fields
initialized to 0.

voi d _init_gene_tag(Gene gene)
Setsgene's tag value to th@éash returned by get_gene_tag. Any Gene Level Type
fieldsthat this gene qualifies for are sétalso initializes the tag of all transcripts of
this gene by calling theinit_tx_tag function on eaclof them

voi d _init_tx_tag(Tr anscri pt tx)
Setstx’s tag value to thé@ash returned by get_tx_tag. Any Transcript Level Type
fields that this tramcript qualifies for are set. Itsa initializes the tag of all CDS or
intron typeFeat ur e objecs stored bythis transcript by calling theinit_exon_tag or
_init_introns_tag function on ach of hem.

voi d _init_exon_tag(Feat ur e cds)
Setscds's tag value to th@ash returned by get_exon_tag. AnyExon Level Type
field that this exon qualifies fare set.

voi d _init_intron_tag(Feat ur e intron)
Setsintron’s tag value to th@ash returned by get_exon_tag. Thelntron Type
field is set, and all othdgxon Level Types are not.

voi d _clear_gene_tag(Gene gene)
Clearsgene's tag field.

voi d _clear_tx_tag(Tr anscri pt tx)
Clearstx’s tag field.

voi d _clear_exon_tag(Feat ur e exon)
Clearsexon’s tag field

voi d _clear_intron_tag(Feat ur e intron)
Clearsintron’s tag field.

-59-

Data Collection Functions

voi d _collect_gene_stats(ar ef genes, stats_struct data)
genes | A reference to aar r ay of Gene objectswith valid filled in tags
data A stats_struct in whichto storeasummary of the data e
tags of the objects igenes.
Increments the apprapte Gene Level prediction counts idata for each matched
valuein the tag of eacfene objectin genes.

voi d _collect_ann_gene_stats(ar ef genes, st ats_struct data)
genes | A reference to aar r ay of Gene objectswith valid filled in tags
data A st at s_struct inwhich to storeasummary of the data ihe
tags of the objects igenes.
Increments the appropria@ene Level annotation counts otata for each matched
value in the tag of eadBene object ingenes.

voi d _collect_tx_stats(ar ef txs,stats_struct data)
txs A reference to aar r ay of Transcri pt objectswith valid filled in
tags
data A stats_struct inwhich to storeasummary of the data e
tags of theobjects ingenes.
Increments the appropriateanscript Level prediction counts idata for each matched
value in the tag of eaclr anscri pt object intxs.

voi d _collect_ann_tx_stats(ar ef txs, st ats_struct data)
txs A reference to aar r ay of Transcri pt objectswith valid filled in
tags
data A stats_struct inwhich to storeasummary of the data e
tags of the objects igenes.
Increments the appropriateanscript Level annotation counts oiata for each matched
value in the tag of eacfr anscri pt object intxs.

voi d _collect_exon_stats(ar ef exons, st ats_struct data)
exons | A reference to aar r ay of Feat ur e objectswith valid filled in
tags.
data A stat s_struct inwhich to storeasummary of the data ihe
tags of the objects iexons.
Incremerts the appropriatExon Level prediction counts idata for each matched
value in the tag of eadfeat ur e object inexons.

voi d _collect_ann_exon_stats(ar ef exons, st ats_struct data)
exons | A reference to aar r ay of Feat ur e objectswith valid filled in

tags

-60-

data A stats_struct inwhich to storeasummary of the data ihe
tags of the objects iexons.
Increments the appropriaeon Level annotation counts btata for each matched
value in the tag of eadfeat ur e object inexons.

Statistic Calculation Functions

The following functions are used to calculate and store all Stats whose value is
determined completely by the value of other Stats, su€anasivity, Specificity, and
Average Stats,each of which depend orCaunt and the total number of adgts. The
Stats these functions calculate are storethia and the Stats which they depend upon
must have been filled in idata prior to calling these functions.

voi d _calculate_stats(st at s_st ruct data)
This catulates the Statshich depend on othétatsateach Level by calling each of
the following five functions.

voi d _calculate_gene_stats(st at s_struct data)
This calculates the Stats at tBene Level which depend on other Stats.

voi d _calculate_tx_stats(st at s_st ruct data)
This calculates th8tats at th@ranscript Level which depend on other Stats.

voi d _calculate_exon_stats(st at s_st ruct data)
This calculates the Stats at tBeon Level which depend on other Stats.

voi d _calculate_nuc_stats(st at s_st r uct data)
This calculates the Stats aetuc Level which depend on other Stats.

voi d _calculate_signal_stats(st at s_st r uct data)
This calculates the Stats at thgnal Level which depend on other Stats.

3.3.3 General Statistics Functions

stats_struct get_statistics (ar ef gtfs, Bool ean verbose)
gtfs A reference to aar r ay of GTF_set objectsfor whichto gather
general statistics
verbose | Setsthe verbose mode on or off. This is an omla@argument with
default value false
This function returns at at s_st r uct with all GeneralStats filled inaccording to
the data irgtfs. It works by simplymaking a gene set for eaGiF_set , calling the
_get_stats function on it, andusing the calculate_stats function to fill in General
Stats which depend on @hGeneral Stat

-61-

stats_struct _get stats(ar ef genes)
genes A reference to aar r ay of gene sets, where a gene set is an
ar r ay of Gene objects.
Returnsast at s_st r uct with all GeneralStatcouns setaccording to the data in
genes. It works by callinghe _get _gene_list_stats function on eaclr r ay of
Gene objectsin genes.

voi d _get gene_list_stats(ar ef genes, stats_struct data)
genes A reference to aar r ay of Gene objects
data A stats_struct in which the results of this function are
returned
Increments all General Stat countdata for each gene igenes. It works by calling
the_get_gene_stats function on eacléene in genes.

voi d _get _gene_stats(Gene gene, st at s_struct data)
Increments alGene Level General Stat countsdiata for gene. The_get_tx_stats
function is called on each transcript of this gene to collect their stats.

voi d _get_tx_stats(Transcri pt tx,stats_struct data)
Increments allranscript Level and som&gnal Level (start and stop codong@eral
Stat counts imlata for tx. The_get_exon_stats function is called on each CDS
feature and intron feature of this transcript to collect their stats.

voi d _get_exon_stats(Feat ur e cds, st at s_struct data)
Increments alExon Level, allNuc Level, and sme Sgnal Level (splice site) @neral
Stat counts indata according tacds.

3.3.4 Filter Funcitons

ar r ay filter_predictions(GTF_set ann, ar ef preds, filter filter, Bool ean
verbose)
ann A reference to aannotationGTF_set object
preds | Areference to aar r ay of predictionGTF_set objects to filter
filter A filter object(seebelow).
verbose | A Bool ean value to set the verbose mode on or off. This is an
optional argument with default value false
This function takes an annotati@TF set and list of gdictionGTF sets, compares the
prediction sets to the annotation,s&id createdor each predictioset a newGTF set
containing only objects from the prediction sétich pass the filter ifilter. The
filtered GTF sets are built using thélter_gene_list function. This functionreturns
anarr ay of GTF_set objecs, each one corresponding to the predic&dik set at
the samepositionin preds. Afilter objectis a reference to anr ay of size three.
The first positim is one of the following: “Check”, “Not”, “And”pr “Or”. If the value
at index 0 is “Check”, then the values at the next two positions correspond_evtie

-62-

andType of this filterin tha order. Only objects at thiselcel of thisType will pass
thisfilter. TheLevel andType values for a “Check” filtemust come from the
get_filter_types function. If the first position is “And” or “Or” then the next two
positions contairi i | t er objects which are joined with a logical andagical or (set
intersetion or set unionjvhen checking to see if an object passesfitkes. If the first
position is “Not” then the next position contains anothelrt er objectwhich an
object must fail to pass thitter.

hash get_filter_types()
Returns @ash listing possible filters. This just returns the results of
_get _filter_type_struct.

hash _get_filter_type_struct()
Returns @ash containing all possible filters in a similar format to e _list_struct
function, described in th8.3.1section abovelt hasa field, “Levels”, which lists each
Levelatwhichfilters can be applied. Eack\uelalsohas a fiéd, indexed by the
Level's namewhich is a list of possible filter types for this Level. Possible filter types
include all Types an@omparison Statypes for this Level

voi d _filter_gene_lists(ar ef anns, ar ef preds, ar ef new_genes, fil t er filter)

anns A reference to aar r ay of Gene objects used as annotation

preds A reference to aar r ay of Gene objects to be filtered

new_genes | A referenceo anar r ay in whichGene objectsfrom preds

which pasdilter will be placed

filter A filter object specifying how to filter th@ TF sets.
This functionmoves though the annotation and prediction lists in the same way as the
_compare_object_lists function, makng comparisons between any overlapping
annotation and prediction genes. Once all comparisons have been made for a given
prediction gene (and stored in that object’s tag) fileer_gene function is used to see
if all or anypartof the prediction genpassfilter and should be added to the
new_genes list.

Gene _filter_gene(Gene gene, fi |l t er filter)
This function eturns a neveene object containing the portion of thisrgethat passes
filter. The gene, as well of all of its transcripts and alheirtCDS and intron
featuresshould have a valid, filled in tagf the form returned bget_gene_tag,
_get_tx_tag, or_get_exon_tag before calling this functionThe_check_filter
function is used to check gene passeéilter. If the gene explicitly psses the filter
then a copy ofiene is returned. If not thenfilter_tx is called on each transcript and
any transcript which passes the filter get placed in aGave object and returned. If
the gene explicitly fails the filter or all transcripts fiié filter completely_filter_tx
returns 0) then 0 is returned.

- 63-

Transcri pt _filter_tx(Transcri pt tx, fil ter filter)
This function eturns a newr anscri pt object containing any part of which
passedilter. The transapt, as well as all of its CDShd intron featuresshould have a
valid, filled in tagof the form returned bget_tx_tag or _get _exon_tag before being
passed to this functiofthe_check filter function is used to checktit passedilter.
If the transcript explicitly passesdtiilter then a copy dk is returned. If not
_filter_exon is called on each coding exon of the transcript and any that pass are placed
in a newTr anscri pt object which is returned. If the transcript beitly fails the
filter or no CDSfeatures pass thdtér, then 0 is returned.

Feat ur e filter_exon(Feat ure exon,f il t er filter)
This function eturns a neWreat ur e, which is a copy o&xon, if exon passes the filter
and 0 otherwiseexon should have a valid, filled in tagf the form returned by
get_exon_tag before being passed to this functiofhe_check_filter function is
used to check i&xon passesilter.

i nt _check filter(hr ef info,stringlevel,filter filter)
info | A reference to Aash containing a tag value of the form returned by
get_gene_tag, get_tx_tag, orget_exon_tag.

level | A stri ng specifying what Level of objedhfo came from.

filter | Afilter objectto checknfo against.
Returns-1 if the tag failed the filter, O if the tag neitifafled nor passed the filtehg
filter, or at least some pa&wof it, is applied to a lowereavel object than this), and 1 if the
tag passed the filter. This function works recursively to getdhes for thewvhole
filter in cases when “And”, “Or”, or “Not” is used. Although the values regdfrom
acall to_check_filter will always be-1, 0, or 1, its internal calls of itself mayso
return 2 A value of 2 meas that this filter is for a LeveVvhich should akady have
been checked (sinditer_gene_lists moves from gene to transcript ta@n when
checking the filter) and the filter was not failed at that level.

3.3.5 Graph Functions

ar r ay make_graphs(GTF_set ann, ar ef preds, ar ef graphs, hr ef resolution,
Bool ean verbose)

ann A reference to the annotatioBTF_set object.
preds A reference tar r ay of predictionGTF_set objecs.
graphs A reference to aar r ay of graph types to be calculatedGraph

types are specified byna&X-Split and a level. Each element of the
ar r ay is ahash with two fields, “split” and “lev&, containing
st ri ng values for the XSplit and levelrespectively.

-64-

resolution | A reference to dash contining a key for each-8plit typeused
in graphs. Each keypoints to anotheinash which specifies the
bins to use for graphofthis X-Split type Thishash can contain
only one oftwo possible keys. The first possible key is “user” and
should point taanar r ay of bins. Each biims ahash with a
“start and“stog’ field each of which should contairf & oat
value. The array of bins should be sattey“start field. Bins
cannot overlap and there should be no gaps (regions covered by no
bin) baween the “start” of the first biand the'stopg’ of the last
bin. The second possible key imiform” and should point t@
hash with “min”, “max’, “count, “size" keys. “min” and“max’
are he minimum and maximum valuestbe X-Split type for any
bin. Any data which fall outside this range is ignorécbunt” is
the number of bins anaiz€' is the size of each bin. All four do
not need to be specitle If any are skipped theyre inferred from
the others or fronthe data aseeded.If all fur values are
specified but are inconsistent the “count” value is ignof@dly
one of thetop-level keys, “user” and “uniform”, should be given
If both aregiven the “uniform”key is ignored.A reference to a
hash of the type pointed to by the-Zplit keys ofresolution is
called ar esol ut i on object.
verbose A Bool ean value to set the verbose mode on or off. This is an
optionalargument with default value O.
For each XSplit/Level pair ingraphs, each prediction set predsis split into bins
according taesolution and aneach bin is compared to the annotationus@tgthe
appropriate one dhecompare_gene_sets, compare_transcript_sets, or
compare_exon_sets functiors. The return value is ar r ay with an index for each
prediction seteach ofwhich contains the data for eachSplit/Level combination that
was passed to the function in tir@phs parameter.The format is:

return_valpred|{ split{ level}[bin] = data

Wherepred is an index into thereds array b specifyfrom which prediction set this
datawas createdsplit andlevel arehash fields specifying the XSplit/Level of the
graph whose data they contaioin is an index into each bin created, atta is a
hash containing three fields:

min The lowerbound for this bin.

max The uppetbound for this bin.

data An Eval report for this bin versus the whole annotation.

arr ay get_graph_x_types()
Returns arar r ay of st ri ng values representing gdbssible XSplits.

- 65-

hash get_graph_y_types()
Returns d@ash in the same format as the return vabdi¢heget_list_struct function
which specifies all Statwhich can be graphed.

arr ay get_graph_x_levels()
Returns arar r ay of st ri ng values representing all possible Levels at which the data
can be split.

array _split_preds_for_graph(GTF_set gtfs, ar ef bins, st ri ng split,stri ng
level)
gtf A GTF_set object to split into bins.
bins A reference to aar r ay of bin objects, eacbf which is ahash
containing three fields “min”, “max”, and “data’hich have types
float,fl oat andst ats_struct respectively The bins should
be sorted from low to high.
split A st ri ng specifying by which property tH@TF set should be split.
level A st ri ng specifying awhich Level theGTF set should be split.
Returns arar r ay of GTF_set objecs, each corresponding to a binbims,
containing theevel Level objects frongtfs which belong in that binBins in the
ar r ay returned are in the sameler as the bins in tHens parameter.

array _get_graph_bins(r esol uti on resolution, st ri ng split)
Returns arar r ay of bin objectsas specified byesolution. Each bin object is laash
with two fields,“min” and“max’, bothf | oat values which specify théower- and
upperboundof the bin respectively. Thsplit parameter is used only for error
reporting.

fl oat _get x val(GTF_obj obj, st ri ng type)
Returns theype value ofobj, wheretype is a valid xSplit type(i.e. if type is GC% and
obj is an exon iteturns th&5C% of that exon).

hash _get graph_x_ val_map()
Returns @nash mapping edt X-Split type to a function that takes<AF_obj and
returns the value of the object for ti{sSplit.

fl oat _get _gc_percent(GTF_obj obj)
Returnsobj’s GC percentage

fl oat _get _match_percent(GTF_obj obj)
Returnsobj’s conservation match percentage.

fl oat _get _mismatch_percent(GTF_obj obj)
Returnsobj’s conservation mismatch percentage.

- 66-

fl oat _get _unaligned_percent(GTF_obj obj)
Returnsobj’s conservatiorunaligned pecentage.

i nt _get_length(GTF_obj obj)
Returnsobj’s length

3.3.6 Overlap Functions

hash get_overlap_statistics(ar ef preds, stri ng type, Bool ean verbose)

preds A reference to aar r ay of GTF_set objects

type A st ri ng speifying the type of overlap clusters to build.

verbose | Setsthe verbose mode on or off. This is an omla@argument with

default value false

This function is used to build overlap clusters (see Chapter 2) from one of more sets of
GTF objects. The tfye of overlap clusters to build is specifiedtiage, which must be
one of thest r i ng values in thar r ay returned by thget_overlap_mode_list
function. Clusters are built using thget_overlap_stats function The number of
clusters of each cluster typs well as the number of objects from each input set in
clusters okach cluster type are counted and returned. The results are returned as a
hash in exactly the format described in thget_overlap_stats function.

arr ay get_overlap_labels(i nt count)
Returns arar r ay containing the firstount letters of the alphabet. Thas r ay can
be used as a mapping between the GTF sets pasged twerlap_statistics and their
labels in the value returned by that function.

arr ay get_overlap_mode_list()
Returns arar r ay of st ri ng values, where eacht ri ng is a valid overlap type for
the argumentype to get_overlap_statistics.

Specific Overlap Type Functions

Each of the following functions takes as input a reference & aay of GTF_set
objects and computes alap clusters from th&TF_set objects by calling
_get_overlap_stats with arguments which cause it to build overlap clusters using a
specific overlap type. The value returned s h containing counts of each cluster
type and is described in detail imet_get_overlap_stats section. The overlap typesed
to buildthe clusters is described for each functidil. types of overlap require that the
two objects are on the same strand.

hash get_tx_exact_overlap_statistics(ar ef preds)

Builds overlap clustersf transcripts which are extly the same (identical start_codon,
stop_codon and CDS features).

-67-

hash get_tx_80p_overlap_statistics(ar ef preds)
Builds overlap clusters of transcripts whose regions overlap by at least 80% of the
length of the longer regn.

hash get_tx _80p_small_overlap_statistics(ar ef preds)
Builds overlap clusters of transcripts whose regions overlap by at least 80% of the
length of the shorter region.

hash get_tx_coding_overlap_statistics(ar ef preds)
Builds overlap clusters ofanscripts whose coding regiorG¥S features) overlap each
other by at least one base pair.

hash get_tx_1bp_overlap_statistics(ar ef preds)
Builds overlap clusters of transcripts whose regions overlap by at least one base pair.

hash get_tx_exact_exon_overlap_statistics(ar ef preds)
Builds overlap clusters of transcripts which match at least one exon exactly.

hash get_tx_exact_intron_overlap_statistics(ar ef preds)
Builds overlap clusters of transcripts which match at least one intron exactly.

hash get_exon_exact_overlap_statistics(ar ef preds)
Builds overlap clusters of exons which are exactly the same (<start>, <end>, and
<strand> are identical).

hash get_exon_80p_both_overlap_statistics(ar ef preds)
Builds overlap clusters of exons which overégzh other by at least 80% of the length
of the longer exon.

hash get_exon_80p_smaller_overlap_statistics(ar ef preds)
Builds overlap clusters of exons which overlap each other by at least 80% of the length
of the shorter exon.

hash get_exon_1bp_overlap_statistics(ar ef preds)
Builds overlap clusters of exons which overlap each other by at least one base pair.

Cluster Building Functions

hash _get_overlap_stats(ar ef preds, fr ef select func, f r ef compare_func)
preds A reference to aar r ay of GTF_set objects.
select_func A reference to a functiowhich takes a single€TF objects and
returnsanar r ay of objectsout of which cluster will be built.
compare_func | A reference to a function which takes two objects of the type
in thear r ay returned byselect_func and returns 1 if they
belong in the same cluster and 0 otherwise.

- 68-

The return value for this function ishash containing a field for each cluster type
which contains data abotlte clusters of that type. Each prediction sgprieds is

given aone character uppease alphabetic label. Each cluster type is given a label
which is simply the alphabetic order concatenation of the labels of all prediction sets
whose objects this cluster type contains. In the return value each cluster type label
points to ahash with a “total” field and fields for each GTF setpreds, indexed by

each sets label. The “total” field contains the total number of clusters of this type and
the GTF set label fields contain the number of objects in clusters of thikyple

come from the GTF set withatlabel. A reference tolaash of the format described

for the return value of this function will be referred to & ast er _count object.

A cluster is stored internally ashash with three fields: “list”, “start”, and “stop”.

The “start” field holds the lowest coordinate of any object in the cluster. The “stop”
fields hold the highest coordinate of any object in the cluster. The “list” field holds a
reference to aar r ay of objecs (of the type returned bselect_func) which are in this
cluster. Each object in the “lisir r ay should have its tag value set to the label of the
GTF set to which it belongs. A reference toaes h of this type will be referred to as a
cl ust er object

voi d _collect_cluster(cl ust er cluster, cl ust er _count cluster_count)
This function increments the countsduister_count according to the objects ahuster.

voi d _combine_clusters(cl ust er c1, cl ust er c2)
Takes all the objecis thec2 cluster and places themaf. Also updates the “start”
and “stop” fields ofttl as necessary. T2 cluster is set to be an empty cluster.

hash _get_overlap_map()
Returns @ash which has a field for each valid overlap type each of whichtpdo
the function which will compute overlap clusters for that type.

aref _get _genes(GTF pred)
Returns a reference to an array of@he objects inpred.

aref _get txs(GTF pred)
Returns a reference to an array offalanscri pt objects inpred.

aref _get exons(GTF pred)
Returns a reference to an array of all CDS fypat ur e objects inpred.

-69-

Overlap Test Functions

Each of the overlap test functions described below will return false anytime the two
objects are not on the same strand.

Bool ean _exact_bounds_overlap_func(GTF_obj a, GTF_obj b)
Returnstue ifthe start and the stop of each object is the same and returns false
otherwise.

Bool ean _80p_both_overlap_func(GTF_obj a, GTF_obj b)
Returns true if the region from the start to the stop of eaelctodverlaps by at least
80% of the length of the shorter object and returns false otherwise.

Bool ean _80p_smaller_overlap_func(GTF_obj a, GTF_obj b)
Returns true if the region from the start to the stop of each object overlaps by at least
80% of the legth of the longer of the two objects and returns false otherwise.

Bool ean _1bp_overlap_func(GTF_obj a, GTF_obj b)
Returns true if the regions from the start to the stop of each object obverédpeast
one base paand returns false otherwise.

Bool ean _tx_exact_overlap_func(Tr anscri pt a, Transcri pt b)
Returns true if the two transcripts are identical (start and stop codons and all coding
exons are the same) and false otherwise.

Bool ean _tx_coding_overlap_func(Tr anscri pt a, Transcri pt b)
Returns truef at least one CDS feature @&overlaps a CDS feature lmand returns
false otherwise

Bool ean _tx_exact_exon_overlap_func(Transcri pt a, Transcri pt b)
Returns true if the two transcripts share at least one exon (same start and stop) and false
otherwise

Bool ean _tx_exact_intron_overlap_func(Tr anscri pt a, Transcri pt b)
Returns true if the two transcripts share at least one intron (same start and stop) and
false otherwise.

3.3.7 Distribution functions

ar r ay get_distribution(ar ef gtfs, ar ef distributions, Bool ean verbose)
Gtfs A reference to aar r ay of GTF_set objects
distributions | A reference to aar r ay of st ri ng values, each of which is a
distributionto calculate
Verbose A Bool ean value to set the verbose neodn or off. This is an
optional argument with default value 0.

-70-

This functioncomputes each distribution dnstributions on eachGTF set ingtfs and
returns arar r ay containirg ahash for eachGTF set ingtfs. Eachhash has a field

for all distributians in distributions, each ofwhich points to dash containing fields

for everyvalue an object in this prediction set takes in this distribution. Each value
field points to an integer which is the number ofeatg which have this value.ofF
example foran Exons_Per_Transcript distribution the field 4” would contain the
number oftranscripts which have 4 exon& hash is used because some distributions
have rare outliers which are very large. In the case of a length distributioof38&6
data could ave length less tha2000 but a small numbeouldhave length between
2000 and 40000. If aar r ay were used to store this data 40000 bins would be needed
to store all the data, but many of them would be empty (halve 0) By using a

hash the memory aeded to storas well as the time required to iterate throogst
distributions is decreased.

hash get_distribution_type hash()
Returns @ash with a field for each distribution type returned by
get_distribution_type_list. All fields are initialized td.

ar r ay get_distribution_type_list()
Returns arar r ay of st ri ng valuescontaining all valid distribution types.

voi d _get_distribution(ar ef gtfs, ar ef data, f r ef type func, hr ef dist_funcs)
gtfs A reference to aar r ay of GTF_set objects.
data A reference to amar r ay of the form returned bget_distribution
described above.
type_func | A reference to a functiowhich takes a singl&TF object and
returns arar r ay of the objectérom which distributions will be
made.
dist_funcs | A reference to Aash of f r ef objects, each of which
corresponds to a distribution to calculate and takes a single object
of the type in thar r ay returned by théype func function and
returns the value of that object for a ttistribution The
functions arendexedin thehash by the distributions name.
This function calculates all difbutions which are keys st _funcs for all GTF sets in
gtfs and places the resultsdiata. This function is used by tlgget_distribution
function to calculate all distributions

hash _get_distribution_functions()
Returns a mapping between the distribution type,sds@ ng, and a function to get
theappropriatevalue for this distribution from &TF_obj object

i nt _get _exons_per(Transcri pt tx)
Retums the number of coding exotxscontans.

-71-

i nt _get_tx_length(Tr anscri pt tx)
Returns theotal lengthof tx.

i nt _get_coding_length(Tr anscri pt tx)
Returns the coding length of

i nt _get_exon_length(Feat ur e exon)
Returns théengthof exon.

fl oat _get exon_score(Feat ur e exon)
Returns thescore ofexon.

3.3.8 General Functionsand Variables
Global Variables

alphabet | Anarr ay of letters of the alphabet. This isad to label overlap
sets.

Functions

voi d print_time(i nt total_time)
Reports to standard error that the calculaiobave ben completed itotal _time
seconds. Time is reported in days, hours, minutes, and secimdgunction is used
by all toplevel Eval functions when in verbose mode.

3.4 eval.pl

3.4.1 Overview

The GUI is organized around te&x toplevel function of the Eval package. Each

function has a frame or set of frames which is usepéaify the input tand display the
output fromthe function. When the function uses a set of frames, each frame contains
buttons which atbw the usr to move forward and backward through the ¥éhen

started the GUI initializes each of these frame sets and displays the Evaluate functions
frame. Across the top of the screen a bar of buttons allows the user to switch from one
frame set to anotheMVhen one of these buttons is pressed the currently displayed frame
set is replaced with theewly selected frame seAll actual computation is done in the
functions of the Evgbm library.

The GUI uses th&k Perlmodule forcreating wirdows andlisplay widgetsuch as

listboxes and buttons. This module was chosen for creating the GUI because it is easy to
use and allows construction of complex graphical user interf&cesasic understanding

-72-

of the Tk module is very helpful but not mssary for understanding or modifying the
code.

Data Types

| i st box
frame
ann_li st box

pred_|istbox

A Tk::Listbox object.

A Tk::Frame object.

A li st box object which contains the namefsall
currently loaded GTF sets. Eaghn_| i st box is
automatically updated when a GTF set is loaded or
unloaded. Only on&TF set may be selected at a time
in a givenann_| i st box.

A li st box object which corgtins the names oflal
currently loaded GTF sets. Egghed_I i st box is
automatically updated when a G¥$é€t is loaded or
unloaded. MultipleGTF sets may be selected at once
in a givenpred_I i st box.

3.4.2 Constants

i nt MIN_WIDTH The minimum widththe man Eval
window can have

i nt MIN_HEIGHT The minimum heighthe main Eal
window can have

i nt EVAL_FRAME_NUM The value ofCurrent_Frame when the
Evaluate frame is displayed.

i nt STATS FRAME_NUM The value ofCurrent_Frame when the
GenStatdrame is dis@yed.

i nt FILTER FRAME_NUM The value ofCurrent_Frame when the
Filter frame is displayed.

i nt GRAPH_FRAME_NUM The value ofCurrent_Frame when the
Graph frame is displayed.

i nt OVERLAP_FRAME_NUM | The value ofCurrent_Frame when the
Overlap frame is dispjeed.

i nt DIST_FRAME_NUM The value ofCurrent_Frame when the

string | HOME

Dist frame is displayed.
The current usés home directory.

string | ACTIVE _COLOR The foreground color for items which
are enabled.

string | INACTIVE COLOR The foreground color for itas which
are disabled.

array GENERAL_IP A list of statistics that should nbe

displayed when showing only General
Stats.

-73-

i nt

i nt

string
array

MIN_DISP_LEN

MIN_VAL_LEN

USER
ALPHABET

3.4.3 Global Variables

i nt
i nt
string
array

array

array
array
array

array
i nt
Bool ean

Bool ean

Bool ean

Bool ean

X _Pos

Y _Pos
Options_File
Main_Buttons

Main_Frames

Ann_GTF_Lbs
Pred GTF_Lbs
GTF_Objs

Obj_Names

Current_Frame
Verbose

Really Verbose

No_Seq

List Mode

The minimum length inltaracters of a
Stat name when it is output to a text file
If the statistic name is sherthan this
valueit will be padded with spaces to
make it the correct length.

The minimum length in dracters of a
Stat value when output tatextfile. If
the value’s length as a string is shorter
than this valuet will be paddedwith
spaces to make it the correct length.
The currehuser’s name.

An ar r ay of letters of the alphabet.

X-position of the main window.

Y -position of the main window.

Full pathand filenameof the users options file.
Anar r ay of buttong(one for each togevel
Eval function)which are used to select tirame
to display

Anar r ay of thetop-level framegqone for each
top-level Eval function)

Anarray of allann_| i st box objects.
Anarray ofall pred_| i st box objects.
Anarray of GTF_set objects containing all
GTF sets which are loaded in memory.
Anarray ofstri ng values containing the
names othe GTFsets which are loaded in
memory.

The index inMain_Frames of the currently
displayed todevel frame.

Bool ean specifying whether or not “Verbose”
mode is turned on.

Bool ean specifying whether of not “Really
Verbose” mode is turned on.

A Bool ean indicating whether sequence files (if
available) should be loaded for ed@MF. If
true, the sequence files will not be loaded.

A Bool ean indicating whether inputs are
expected to be list files @TF files. A value of
true means list files are expected.

-74-

string | Precision A C styleprintf formatst r i ng indicating the
level of precision with which to report dathe
numkber of decimal places to repart)

string | Cwd Current working directory. Defaulor loading
and saving dialog boxes.
hash General A hash of every $at andType for eachLevel.

Each field contains Bool ean which is truef
the Type or Stashoud be diplayed when
reporting &neralStatistics ard falseif it should
not.

hash Display A hash of every $at andType for each.evel
Each field contaings aBool ean which is truef
the Type or Stashould be displayedhen
reporting statistics and falseitfshould not.

hash Graph_Resolution | A hash to store the resolution for each graph

split type.
3.4.4 Functions

I nitialization Functions

voi d init_hashes()
Initializes theGeneral andDisplay variables.

voi d initialize_frames()
Calls each topevel frame’s initialize function.

voi d switch_frames(i nt new_frame)
Displays the topevel frame specified byew_frame, which is an indexnto the
Main_Frames array

General Functions

ar r ay make_ann_pred_frame(f r ane frame)
Creates a neWwr ane insideframe, which contains aann_| i st box and a
pred_l i stbox. This function is used by frame initialization funcsda get
listboxes which hold all currently loaded GTF sets. By using this function the code of
each frame does not need to keep track of which GiBFase currently loaded. The
newly created r ane is not displayed to the screen (usingphek, grid, orplace
function of thef r ame objec). The return value is an array containing the new
frame, theann_| i st box and thepred_| i st box in that order.

-75-

ar r ay make_pred_frame(f r ane frame)
Similar tothemake_ann_pred_frame function excepthe newly createfir ane
contains onlyapr ed_| i st box. The return value is an array containing the new
f rame and thepr ed_I1 i st box in that order.

voi d adjust_data_precision(ar ef data)
data | A reference to the output froEval::evaluate or
Eval::get _general_statistics
This function adjusts all Stat valuesdata to have the precision (number of decimal
places) specified birecision.

voi d message_func(st ri ng msg)
Displays a message box containimgg.

voi d error_func(stri ng error_msg, i nt fatal)
Displays a message box containengor_msg. The second argument is optional and if
it is given and is not O the program exits with stédie.

string get_tmp_file()
Returnsghe name of a temporary file which should not be in use by any other process.

Menu Functions

voi d open_func()
Displays a Open File dialog box which allows the user to select a new GTF or list file
to load into memory. Files are loaded with libeed_func function.

voi d load_func(st ri ng filename)
Takes filename of a GTF or list file, loads the file into memory, and adds it to all
annotation and prediction listboxes using ¢heate gtf_object andadd_to_display
functions.

GTF create_gtf_object(stri ngfile, st ri ng seq, st ri ng conseq)
Takes a GTF filename and optional sequence and conservation sequence filenames,
loads the file as &TF object and returns tH@TF object. If either sequence is given
they are loaded into tH&TF object unles®o_Seq is true

voi d add_to_display(st ri ng name, GTF_set gtf)
gtf is added to all prediction and annotation lisboxes under the mamnee gtf and
name are also added BTF_Objs andObj_Names respectively.

voi d save_func()
Opens a window which allows the user ttesta GTF set to save to disk.

-76-

voi d _save_pred_func(GTF_set object)
Takes aGTF_set and opens a Save File dialog which allows the user tockpect as
either a GTF file or list file depending on whether there are one or more th&tene
objects inobject. Whenobject contains more than of& F object it is saved as a list
file and all individualGTF objects in the list are saved as GTF files in timeesa
directory with the namefilename.#.gtf” where ‘filename” is the name the list file was
saved to ath “#” is the position of each GTF in the list.

voi d remove_func()
Opens a window which allows the user to select GTF sets to unload.

voi d _remove_preds_func(pr ed_I| i st box plb)
Removes all GTF sets selectegih from allann_| i st box andpr ed_I i st box
objects

voi d help_func()
Display the eval help system.

voi d about_func()
Displays an about dialog box containing general information about eval.pl.

voi d exit_func()
Exits the program.

Options Functions

voi d load_options_file()
Loads the program optionsofn the user’s .evalrc file. Options include which Types
and Stats to display for each Level and the graph resolutions to use for-8atih X

voi d save_options_file()
Writes the currently loaded options into the user’s .evalrc file

voi d edit_options_func()
Loads a window that allows the user to edit the options and save them to his .evalrc file.

Eval Frame Functions

voi d initialize_eval_frame()
Initializes the display widgets of the Evaluate frame.

voi d eval_run_func(ann_| i st box alb, pred_I| i st box plb)
RunsEval::evaulate using theGTF setselected iralb as the annotation set and the
GTF sets selected iplb as the prediction setand displays the results in a new window
on the screensingthedisplay_eval_results function

-77-

voi d display_eval_results(ar ef data, ar ef names)

data A reference to aar r ay of Eval reports, as returned by
Eval::evaluate

names | A reference to aarr ay of st ri ng valuescontainingthe nams of
the annotation and predicti@iTF setérom whichdata was created
The annotatin setnameis listed first followed by the prediction set
names in the same order as thieports appear idata.

Displays the reports data in a new window.

voi d fill_general_stats_frame(ar ef data, ar ef names, f r ane frame)

data A reference to aar r ay of Evalreports, as returned by
Eval::evaluate

names | A reference to aarr ay of st ri ng valuescontainingthe nams of
the annotation and predicti@il F setsfrom which data was created.
The annotation setameis listed first followed by the predicticset
names in the same order as thieports appear idata.

frame | A franme objectin which the Genel Stats oflata should be
displayed

Displays the General Stats fratata in frame.

voi d save_eval_output(ar ef data, ar ef names)
data A reference to aar r ay of Evalreports, as returned by
Eval::evaluate
names | A reference to aarr ay of st ri ng valuescontainingthe nams of
the annotation and predicti@il F setsfrom whichdata was created.
The annotation setameis listed first followed by the prédtion set
names in the same order as thieports appear idata.
Opens a Save File dialog box which allows the user totbaVievalreports indatato a
textfile.

string pad_string(stri ng string, i nt min_len)
Appendsstring with spaces until it hdsngthmin_len.

string get_general_stats_text(ar ef data, ar ef names)

data A reference to aar r ay of Evalreports, as returned by
Eval::evaluate

names | A reference to aar r ay of st ri ng valuescontainingthe nams of
the annotation and predicti@il F setsfrom whichdata was created.
The annotation setameis listed first followed by the prediction set
names in the same order as theports appear idata.

Reurns ast r i ng, containing all General Stats data, to be written to a file.

-78-

GenStats Frame Functions

voi d initialize_stats_frame()
Initializes the displayvidgets of the GenStframe.

voi d get_stats_run_func(pred_I i st box plb)
RunsEval::get_statistics on theGTF setsselected iplb and displayshe results in a
new window using thdisplay_stats_func function.

voi d display_stats_func(ar ef data, ar ef names)
data A reference to aar r ay of Evalreports, as returned by
Eval::get_statistics
names | A reference to aar r ay of st ri ng valuescontainingthe nams of
the annotation and predicti@ilF setsfrom whichdata was created.
The annotation setameis listed first followed by the prediction set
names in the same order as theports appear idata.
The reports are displayed in a nemndow using thdill_general_stats frame
function.

voi d save_stats_output(ar ef data, ar ef names)
data A reference to aar r ay of Evalreports, as returned by
Eval::get_statistics
names | A reference to aarr ay of st ri ng valuescontainingthe nams of
the annotation and predicti@iTF setsfrom whichdata wascreated.
The annotation setameis listed first followed by the prediction set
names in the same order as thieports appear idata.
Opens a 8veFile dialogboxwhich allbws the user to save th&al reports indata to a
text file.

Filter Frame Functions

voi d initialize_filter_frame()
Initializes the display widgets of the Filter frame.

Bool ean parse_filter_string(hr ef filter_keys, st ri ng filter_text, ar ef filter)
filter_keys | A reference to Aash which maps the single character
alphabetic labs used iffilter_string to filter they represent.
filter_string | A Filter String as described in the sectiB.6 above.
filter An ar r ay reference which thei | t er object will be returned
in.
Thefilter_text st ri ng is parsed, using thgarse_filter _helper function, and placed a
filter object filter, to be passed to tieval::filter _predictions function If
filter_string is successfullparsed intdilter, the function returns 1, otherwise it returns
0.

- 79 -

Bool ean parse_filter_helper(hr ef keys, stringtext,filter filter)
keys | A reference to &aash which maps eackingle character alphabetic
labelused intext to the filter it represergt

text | A Filter String as described in the sectibB.6 above.

filter | Anarr ay reference which thi | t er object will be returned in.
This function recursively calls itself to patsgt into filter usingkeys. If text is not a
valid Filter String the function returns 0. 1éxt is successfullparsed intdilter, the
function returns 1.

voi d filter_run_func(ann_I i st box alb, pred_I| i st box plb,fil ter filter,

st ri ng name)
The predictionGTF setsselected bylb are filteredagainst the GTBet selected ialb
according tdilter using theEval::filter_predictions function, and the newly created
GTF sets and placed inla@nnotation and prediction listboxes under the name of the
predictionGTF set thg were created from but havimgme inserted into the title.

Graph Frame Functions

voi d initialize_graph_frame()
Initializes the display widgets of the Graph frame.

hash get_default_graph_resolution()
Returns the default graph resolution which is used when no resolution is specified in
the uselrs .evalrc fileor the user does not have a .evalrc file

array graph_run_func(ann_I i st box alb, pred_| i st box plb, | i st box glb,

resol uti on resolution)
Items inglb should have the format @vel: X-Split” where “Level” is the Level at
which the data should be split and-3plit” is the property by which the data should be
split. The items imglb are then converted into the format exteel by thegraphs
parameteof Eval::make_graphs. The annotatioGTF setselected iralb and all
predictionGTF sets selected iplb along with thegraphs parameter and thesolution
argument to this function are passed&val::make_graphs and the redts of that
function are returned.

voi d save_graph_func(ann_I i st box alb, pred_li st box pslb, | i st box glb,

aref graphs, stringlevel,stringtype string stat)
This function opesa Save File dialog box which allows the user to save a graph to a
text file. The graph which is saved is specified by the inputs to this function. The three
| i st box arguments are the same as ingheph_run_func function above. The
graphs argument is the output froEval::make_graphs. The threest ri ng
arguments specify the lel, Type, and Stdieing graphed.

-80-

voi d display_graph_func(ann_I i st box alb, pred_| i st box pslb, | i st box glb,
aref graphs, stringlevel,stringtype string stat)
Takes the same inputs as #ave_graph_func functionbut displays the graph in a
new windw using theynuplot_bar_bin functioninstead of saving it to a file

voi d gnuplot_bar_bin(ar ef graph, st ri ngtitle, string x_ label,stri ng
y_label)
graph | A reference to aar r ay of hash objecs. Eachhash represents a
single bar to be graphed and consaihree fieldsmin”, “max’, and
“count. “min” and“max’ are thdower- and uppeix-axisbounds of
the bar andcount is theheight of the bar on thegxis.
title The title ofthe graph.
x_label | The label for the saxisof the graph
y label | The label for the yaxis ofthe graph
This function displays the graph specifieddogph with the labels specified by the
st ri ng arguments in a new window using gnuplot

Overlap Statistics Frame Functions

voi d initialize_overlap_frame()
Initializes the display widgets of the Overlap frame.

voi d overlap_stats_run_func(pred_I i st box plb, I i st box db)
Theitems in theslb | i st box arest ri ng valueswhich representverlap typs and
exactly one of which should be selected. Using the overlapitgelectedsb and all
predictionGTF sets selected iplb the overlap statistics are calculated using the
Eval::get_overlap_statistics function. The results are displayed in a new window
using thedisplay_overlap_stats_func function.

voi d display_overlap_stats_func(hr ef data, ar ef pred names, stri ng
overlap_type)
data A reference to the output froEval::get_overlap_statistics
function
pred_names | A reference to aar r ay of st ri ng valuescontainingthe
names of the predictiocBTF setsfrom whichdata was
created
overlap type | The type of overlap used to credtta.
This function displays the overlap ssiits indata in a new window.

voi d save_overlap_stats_output(hr ef data, ar ef pred names, stri ng

overlap_type)
data A reference to the output fnroEval::get_overlap_statistics
function

-81-

pred_names | A reference to aar r ay of st ri ng valuescontainingthe
names of the predictiocBTF setsfrom whichdata was
created
overlap type | The type of overlap used to credtta.
This function opens a Savéd-dialogbox which allows the useo save the overlap
statistics indata to a text file.

string get_overlap_stats_text(hr ef data, ar ef pred_names, stri ng
overlap_type)
data A reference to the output froEval::get_overlap_statistics
function
pred_names A reference to aar r ay of st ri ng valuescontainingthe
names of the predictiocBTF setsfrom whichdata was
created
overlap type | The type of overlap used to credtga.
This function eturns a tet version of the overlap statisticsdata.

Dist Frame Functions

voi d initialize_distribution_frame()
Initializes the display widgets of the Distribution frame.

voi d save_distribution_data(st ri ng gtf_name, st ri ng dist_name, ar ef data)
gtf name | The name of th&TF setfrom which this distribution was mad
dist_ name | The type of distribution used to ma#tata
data The output obin_distribution_data.
This functionopens a Save File dialog box anidwas the user to save the distribution
in data to a text file.

voi d graph_distribution_data(st ri ng gtf_name, st ri ng dist_name, ar ef data)
gtf_ name | The name of th&TF setfrom which this distribution was made
dist name | The type of distribution used to ma#tata
data The output obin_distribution_data.
This functiondisplays the distribution idata in a new window usinghe
gnuplot_bar_bin function

ar ef bin_distribution_data(ar ef data, f | oat max, f | oat res, Bool ean cum)

data A reference to the outputdm Eval::get_distribution.

max The maximurrupper boundor any bin.

res The size of the bins thdatashould be placed in.

cum If true then the distributismade should be cumulative. In a

cumulative distributiorthereturnedvalue for any bin is the
number of objects which fall in it plus the sum of the number of
objects in all bins below it.

-82-

This function takes the distribution data and moves it into bins of sizes, going
from O tomax. All data indata which would fall into bins abovesax are placed into a
single bin that covers everything franax to infinity. The bins are of the form
expected by thgnuplot_bar_bin function. A reference toar r ay of the bins sorted
from low to high xaxis positionjs returned.

3.5 Eval Scripts

The following scripts are command line interfaces to the functions of the Eval.pm library.
Most functians from the Eval scripts are not listed below. If a function is not lisied it
identical to the function of the same name ingéetion3.4above.

3.5.1 evaluate gtf.pl
st ri ng print_eval_output()

This function is thesame aghesave_eval_output function of eval.pbut it returns the
text generated instead of openin§ave He dialogbox and saving the text to a file.

3.5.2 get_general_stats.pl

<no new functions>

3.5.3filter_gtfs.pl

voi d print_filter(fi | t er filter)
Takes & i | t er object and displgs it as a text string to standard .otihis function is
used for debugging purposes.

voi d print_filter_types()
Prints all valid filters to stadard out

voi d check_filter(st ri ng level, st ri ng type)
Takes twast r i ng values containingthe Level and pe of a filter and exits with an
error if they do not specify a valid filter.

voi d error_func(st r i ng message)
Writes message to standard erraand «its.

ar r ay load_func(st ri ng filename)

Opendilename, which should be GTF or list file and loads the file into a GTF_Set
objectwhich it then returns.

- 83-

3.5.4 graph_gtfs.pl

voi d parse_resolution_text(hr ef res, arr ay text)
Each value irtext is a line of text from a .evalrc file specifying the graph resolutions.
The resolutions are parsed out of the text and placess,iwhich is used as the
resolution argument to th&val::make_graphs function.

voi d print_graph_types()
Prints all valid %xSplits and Level/Type/Stat combinaticies building Eval graphso
standard out

array load_func(st r i ng filename)
Same afoad_func in filter_gtfs.pl

3.5.5get_overlap_stats.pl

<no new functions

3.5.6 get_distribution.pl

arr ay load_func(st ri ng filename)
Same asoad_func()in filter_gtfs.pl

-84-

Chapter 4: Future Work

The Eval project isfor the mostpart complete Several small upgrades to the main
functions as well as small reorganization of the cadslanned

The most general way to extend the Eval packages addition of new Statdf a

situation arises where a new Stat is required it can easily be added to the existing code, as
can a new Type.Adding a new Level would require significanttyore work but could

be done. The need for a new Level is not anticipaséeduse the current set of Levels

covers all types of informatiowhich can be stored in a GTF file

The GTF validator currently ¢puts a list of all errors and warnings encountered when
loading a GTF file. No distinction is made between an error and a warning so the user
must decide the severity of the problem and whetleeptbblem must be fixed or is
acceptableo leave as it isThis should be changed so that a distinction between errors
and warnings is madeErrors should be problems which must be fixed before the file can
be usedecause they could never occur in real genes, sucHrasra stop codons.

Warnings should bmessages that alert the user to a situation which is abnormal but may
still be correct, sutas norstandard splice sites.

The graph function resolution@hild be extended tbe more versatile. Currently there is
no way to center the graph ¢ime data.The resolution should be able todenerically
specified around the minimum and maximum values in the ddte.lack of this feature
is a problenbecause@raphs, even at a fixed-Zplit, may have widely differing ranges of
values on the-=axis. For eample, an exon length graph will cover a much small and
much lower range of-axis values than a transcript lengtfaph If the resolution could
be specified to haveome specific number @ins and go from the mimum value to the
maximum valueyaryingranges would not be a problem.

Some of the codm eval.pl is repeated in thevé scripts. This code belongs in some
library, so that any changes that need to be made do not raljeineg the code in

multiple places. The Eval.pm library containgledor comparing sets of GTF files so it

is not the appropriate place for the repeated code, which is user interface functions, such
as loading GTF files, parsing command line arguments, and displaying Eval function
results in different ways. A new useterface library should bereated to contain this

code.

-85-

Appendix A: GTF File Format Specification

GTF stands for gne transfer format. This borrows frahe GFF file formafl], but has
additional structure that warrants a separate definition and format name.

The gructure is similar to GFF, so the fields are:
<segname><sourcefeature><start><endscore<strand><frame><attributes

Here is a simple emple with 3 translated exons. The order ofrtves is not important.

Hs- Chl Twi nscan CDS 380 401 . + 0 gene_id "1"; transcript_id "1.a
Hs- Chl Twi nscan CDS 501 650 . + 2 gene_id "1"; transcript_id "1.a
Hs- Chl Twi nscan CDS 700 707 . + 2 gene_id "1"; transcript_id "1l.a
Hs- Chl Twi nscan start_codon 380 382 . + 0 gene_id "1"; transcript_id "1.a
Hs- Chl Twi nscan stop_codon 708 710 . + 0 gene_id "1"; transcript_id "1.a

The whitespace in this example is provided only for readability. In GTF, fields must be
separated by a silggTAB and no other whitespace.

<segnhame>
The<segname> field contains thame of the sequence which this gene is on.

<source>
The<source field should be a unique label indicating wédne annotations came from
—typically the name of either a predictiorogram or a public database.

<feature>

The<feature> field can take four values: "CDS", "start_owod, "stop_codon”, and
"exon".The “CDS” feature represents the coding sequence starting with the first
translated codon and pexding to the last translated codon. Unlike Genbank annotation,
the stop codon is not included in the “CDS” feature for the terminal exon. The “exon”
feature is used to annotate all egpmcluding norcoding exonsThe “start_codon” and
“stop_codon” fetures should have a total length of three for any transcript but may be
split onto more than one line in the rare case where an intron falls inside the codon.

<start> <end>

Integer start and end coordinatdghe feature relative to the beginning of the sequence
named in <segname>sstart> must be less than or equal to <end>. Sequence numbering
starts at 1. Values of <start> and <end> must fall inside the sequemd@chthis

feature resides

<score>

The <score> field is used to store some score for the feature. This can be any numerical
value, or can be left out and replaced with a period.

-86-

<frame>

A value of0 indicates that the first whole codontbé reading frame is located ain3ost
base. 1 means that there is one extra base before thehiistcodon and 2 means that
there are two extra bases before the Witsble codon. Note that the frame istrthe

length of the CDS mod ¥ the strands -', then the first base of the region is value of
<end> because the corresponding coding region will run from <end> to <start> on the
reverse strand.

<attributes>
Each attribute in theattribute> field should have thform:
attribute_name “attribute_value”;

Attributes must end in a semicolon which must then be separated from the start of any
subsequent attribute by exactly one space character (NOT a tab character). Attributes’
values should be surrounded by doulpletes.

All four features have the same two mandatory attributes at the end of the record:
gene_id A unique identifier for the genomic source of the transcript
Used to group transcripts ingenes.
transcript_id | A unique identifier for the predietl transcript Used to
group features into transcripts.

These attributes are designed for handling multiple transcripts from the same genomic
region. Any other attributes or comments must appear after these two.

[comments]

Any line may contain commesnt Comments are indicated by the # character and
everything following a # character on any line is a comment. As such, all fields are
prohibited from containing # characters.

Here is an example of a gene on the negative strand. Larger coordin&esf araaller

coordinates. Thus, the start codothis3 basepairswith largest coordinates among all
those lasepairsthat fall within the CDS regions. Similarly, the stop codon is thasgb
pairswith coordinates just less than the smallest coordnaiitin the CDS regions.

Hs- Chl Twi nscan CDS 193817 194022 . - 2 gene_id "1"; transcript_id "1.a
Hs- Chl Twi nscan CDS 199645 199753 . - 2 gene_id "1"; transcript_id "1.a
Hs- Chl Twi nscan CDS 200369 200507 . - 1 gene_id "1"; transcript_id "1l.a
Hs- Chl Twi nscan CDS 215991 216028 . - 0 gene_id "1"; transcript_id "1.a
Hs- Chl Twi nscan start_codon 216026 216028 . - . gene_id "1"; transcript_id "1.a
Hs- Chl Twi nscan stop_codon 193814 193816 . - . gene_id "1"; transcript_id "1.a

Note the frames of the coding exons. For example:

The first CDS (from 216028 to 215991) always has frame zero.

The frame of the first CDS is 0 and it has ler@gh (38- 0) % 3 =2, so the frame of the
secondCDSis 1 (the first two baseof the codon are on the previous exon leaving one
base at the start of this exon)

-87-

The frame of the second CDS is 1 and it has leb8®h(139- 1) % 3 =0, so the frame
of the thirdCDSis 0.

The frame of the third CDS B and it has lengtii09 (109- 0) % 3 = 1, sothe frame of
the terminal CDSs 2 (the first base of the codon is on the previous exon leaving two
bases at the start of this exon).

Alternatively, the frame of terminal CDS can be calculatédout the rest of the gene.
The length othe terminal CDS is 206. 2@6 3 =2, which isthe frame of the terminal
CDS.

Here is an example in which the "exon" feature is used. It is a 5 exon gene with 3
translated exons.

Hs- Chl Twi nscan exon 150 200 . + . gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan exon 300 401 . + . gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan CDS 380 401 . + 0 gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan exon 501 650 . + . gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan CDS 501 650 . + 2 gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan exon 700 800 . + . gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan CDS 700 707 . + 2 gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan exon 900 997 . + . gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan start_codon 380 382 . + 0 gene_id "1"; transcript_id "1.a";
Hs- Chl Twi nscan stop_codon 708 710 . + 0 gene_id "1"; transcript_id "1.a";

- 88-

Appendix B: Fasta File Format

The fasta file formaits a simple format for storing one or mgenomic or protein

sequences. Each sequence is preceded by a header line which must begin with “>”. The
first word following “>” is the name of the sequence and all text following the name is a
description oflie sequence. All lines following the header line contain the actual
sequence. All forms of whitespaicethe sequencare ignored and there is no limit to the
number of characters allogd®n a line. Any nomucleic ornonamino acid characters in

the sguence of the file are illegal.

Fasta fileswith multiple sequences have multiple header lines each followed by one or
more lines containing the sequence associated with that header. Here is an example of a
multi sequence fasta file:

> seq_1l This is exanpl e sequence 1
TTCATTGTGTATTTTATCACACAAATAAGGCACAGATTTTTAAAAAATCA
TCAACTTCCTGCCTACCTATATAGACATAATTACATAGAAGCTCAACTAA
ATTTGCAAACATTCCAGAGT TTGGGTTTCCAATAATTCTTTGTGATTCTT
TAAAAGGTAAAGTATTTTTTTCCCATAAAACATAGCAACATTTAAAATCA
CCCGTAGAATGTCCTGCCATTTTTGTTTCTGTAGTTTCCTCATTTTCTGC
AAAGCCTCGCTGAGGAAATTGACTTTGAATATCCTTT

> seq_2 This is exanpl e sequence 2
TTTAGAAAGCATTGTGGTAAAACATTGAATCATCATGGTCATAAGTTCTG
TTCACATTCTTTCTTGCTTTGAATATTTTTTCCCAGT GGCCAATATTTGA
TTCTGTTGTATCATGGCTAAAAGGTAGCCATGCCAACAAAATAAAG

> seq_3 This is exanpl e sequence 3
GAAGTCTTTGGAATAAGT GATCCCATCACAATGAATCAATTTGCCATTGG
AACATATTTTTACAAAGTCACTCTTTTGAAAATATTTAGCTATGAATTAA
AACAGAGTCTGTATGGT TAATATTTTTCCTGGT CTAAGGT GAACAGCATT
TTAGAGAAT GAACT CAGGACACAACCACAGCAGAAGAAAAACGT GATAAT
TAAGTTTACACATGTGTGT TACTACTGCAACAGAAAACATG

All fasta files used by the Eval package should contain a single genomic sequence.

- 89-

Appendix C: Conservation File Format

The conservation file is used IbwINSCAN to store information about the slarities

between some target sequence and some informant database of sequences. It is generated
by runningBLAST [3] to comparghetargetsequence against thidormantdatabase. All

high scoringsLAST hits are incorporated into the conservation sequence in such a way

that for each base in the target sequgthmeconservatio sequence states whether that

base is matched, mismatched, or unaligned. If the base is matched, then the base is
covered by some high scoriBgasT hit and is aligned to a matche(A to A). If the

base is mismatched, then the base is covered lghasboringgBLAST hit but iseither

aligned b a mismatchife. A to T) or aligned to a gaplf the base is unaligned, then no

high scoringgLAST hit coverst.

The conservation file format is very simplenlike fasta format, theequence has no
headeland only a single sequence is allowed per file. The file contains a single line,
which holds a string of “0”, “1”, and “2” characters. A “fifeans that this base was
mismatched, a “1” means the base is matched, and a “2” means the base was unaligned.

-90-

Appendix D: Example Eval Report

Summary Stats
Annotation: refseq.list
Pr edi cti ons:

Gene Sensitivity
Gene Specificity
Transcript Sensitivity
Transcript Specificity
Exon Sensitivity
Exon Specificity
Nucl eoti de Sensitivity
Nucl eoti de Specificity

General Stats
Predi cti ons:

CGene
Al |
Count
Tota

twi nscan. |ist

14. 35%
6. 55%

12.83%
6. 55%

71. 89%
38. 58%
83. 50%
41. 95%

Transcripts

Transcripts Per

Transcri pt
All
Count

Average Length

Total Length

Aver age Codi ng Length

Tot a

Aver age Score

Total Score

Exons Per

Total Exons
Conpl et e

Count

Codi ng Length

Aver age Length

Total Length

Aver age Coding Length

Tot a
Aver age Score
Total Score
Exons Per
Tot al Exons

| nconpl et e
Count

Codi ng Length

Aver age Length

Total Length

Aver age Coding Length

Tot a
Aver age Score
Total Score
Exons Per
Tot al Exons

Exon

Al l

Count

Codi ng Length

Average Length

Total Length
Aver age Score

refseq.list

11930. 00
13812. 00
1.16

13812. 00
46856. 60
647183295. 00
1491. 43
20599564. 00
0.00

0. 00

9.23
127428. 00

12476. 00
46460. 42
579640144. 00
1480. 96
18476415. 00
0. 00

0.00

9.33
116452. 00

1336. 00
50556. 25
67543151. 00
1589. 18
2123149. 00
0. 00

0.00

8.22
10976. 00

109883. 00
164. 74
18102268. 00
0.00

-91-

twi nscan. |ist

26119. 00
26119. 00
1.00

26119. 00
24042. 48
627965594. 00
1357. 62
35459553. 00
215.19
5620498. 75
7.84
204729. 00

24918. 00
23712. 27
590862393. 00
1361. 40
33923293. 00
217.02
5407714. 92
7.82
194895. 00

1201. 00
30893. 59
37103201. 00
1279. 15
1536260. 00
177. 17
212783. 83
8.19
9834. 00

204729. 00
173. 20
35459553. 00
21.69

Initial

Total Score

Count

Aver age Length
Total Length

Aver age Score
Total Score

| nt ernal

Count

Aver age Length
Total Length

Aver age Score
Total Score

Ter m nal

Si ngl e

Intron

Nuc
Al |

Initial

Count

Average Length
Total Length

Aver age Score
Total Score

Count

Average Length
Total Length

Aver age Score
Total Score

Count

Average Length
Total Length

Aver age Score
Total Score

Count

Count

| nt ernal

Count

Ter m nal

Si ngl e
I ntron

Si gnal
Splice

Splice

Start

Count
Count
Count
Accept or
Count

Donor
Count

Codon

Count

St op Codon

Count

Detail ed Stats

Annot ati on:
Predi cti ons:
CGene

Al |

refseq.list

Count
Ann Count

Total Transcripts

0.00

10164. 00
180. 63
1835955. 00
0. 00

0.00

87588. 00
143. 53
12571788. 00
0. 00

0.00

10670. 00
224.94
2400130. 00
0.00

0. 00

1488. 00
872. 64
1298481. 00
0.00

0. 00
97658. 00
5541. 95
541215329. 00
0.00

0. 00
18102268. 00
1835955. 00
12571788. 00
2400130. 00
1298481. 00

541215329. 00

98258. 00
97752. 00
12656. 00

13074. 00

twi nscan. | i st

26119. 00
11930. 00
26119. 00

-92-

4440400. 20

22002. 00
168. 70
3711673. 00
18. 96
417156. 27

157247. 00
154. 42
24281817. 00
22.12
3478941. 25

21745. 00
237.55
5165434. 00
14.73
320222. 35
3735. 00
615. 96
2300629. 00
59. 99
224080. 33
178610. 00
3316. 52
592363950. 00
0.00

0. 00
35459553. 00
3711673. 00
24281817. 00
5165434. 00
2300629. 00

592363950. 00

178992. 00

179249. 00

25700. 00

25335. 00

Transcri pt
All

Transcripts Per
Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity
Exact Count

Exact WMatched

Exact Specificity
Exact Sensitivity
Overl ap Count

Overl ap Mat ched
Overlap Specificity
Overlap Sensitivity
Nuc Overl ap Count

Nuc Overl ap
Nuc Overl ap
Nuc Overl ap

Mat ched
Specificity
Sensitivity

Count
I Mat ched

| Introns Specificity
I Introns Sensitivity
| Exons Count
I

I

Al'l Introns
I ntrons

Exons Mat ched

Exons Specificity
Al Exons Sensitivity
Exact Intron Count

Exact I ntron Matched
Exact Intron Specificity
Exact Intron Sensitivity
Exact Exon Count

Exact Exon Matched

Exact Exon Specificity
Exact Exon Sensitivity
Start Codon Count

Start Codon Matched
Start Codon Specificity
Start Codon Sensitivity
St op Codon Count

22222

St op Codon
St op Codon
St op Codon

Mat ched
Specificity
Sensitivity

Count

Mat ched
Specificity
Sensitivity

Start Stop
Start Stop
Start Stop
Start Stop

Count

Ann Count

Aver age Length
Total Length

Aver age Coding Length
Total Coding Length
Aver age Score

Total Score

Exons Per

Total Exons
Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity
Exact Count

Exact Mat ched

1.00
1712. 00
1712.00
6. 55%
14. 35%
1646. 00
1646. 00
6. 30%
13. 80%
12330. 00
10835. 00
47.21%
90. 82%
12172. 00
10775. 00
46. 60%
90. 32%
1737.00
1738. 00
6. 65%
14.57%
1712.00
1712. 00
6. 55%
14. 35%
9816. 00
9310. 00
37.58%
78. 04%
10789. 00
9797. 00
41. 31%
82.12%
4636. 00
4632. 00
17.75%
38. 83%
6930. 00
6920. 00
26. 53%
58. 01%
2793. 00
2793. 00
10. 69%
23.41%

26119. 00
13812. 00
24042. 48

627965594. 00

1357. 62
35459553. 00
215.19
5620498. 75
7.84
204729. 00
1712. 00
1772.00

6. 55%

12. 83%
1646. 00
1704. 00

-03-

Exact Specificity 6. 30%
Exact Sensitivity 12. 34%
Overl ap Count 12330. 00
Overl ap Mat ched 12599. 00
Overlap Specificity 47.21%
Overlap Sensitivity 91. 22%
Nuc Overl ap Count 12172.00
Nuc Overl ap Matched 12517. 00
Nuc Overlap Specificity 46. 60%
Nuc Overlap Sensitivity 90. 62%
Al Introns Count 1737. 00
Al'l Introns Matched 1791. 00
All Introns Specificity 6. 65%
All Introns Sensitivity 12.97%
Al'l Exons Count 1712.00
Al | Exons Matched 1772.00
Al'l Exons Specificity 6. 55%
Al'l Exons Sensitivity 12. 83%
Exact Intron Count 9816. 00
Exact I ntron Matched 10771. 00
Exact Intron Specificity 37.58%
Exact Intron Sensitivity 77.98%
Exact Exon Count 10789. 00
Exact Exon Matched 11325. 00
Exact Exon Specificity 41. 31%
Exact Exon Sensitivity 81. 99%
Start Codon Count 4636. 00
Start Codon Mat ched 5230. 00
Start Codon Specificity 17. 75%
Start Codon Sensitivity 37.87%
St op Codon Count 6930. 00
St op Codon Mat ched 7635. 00
Stop Codon Specificity 26.53%
St op Codon Sensitivity 55. 28%
Start Stop Count 2793. 00
Start Stop Matched 2998. 00
Start Stop Specificity 10. 69%
Start Stop Sensitivity 21.71%
Conpl et e
Count 24918. 00
Ann Count 12476. 00
Aver age Length 23712. 27
Total Length 590862393. 00
Aver age Codi ng Length 1361. 40
Total Coding Length 33923293. 00
Aver age Score 217. 02
Total Score 5407714. 92
Exons Per 7.82
Total Exons 194895. 00
Correct Count 1712.00
Correct Matched 1704. 00
Correct Specificity 6. 87%
Correct Sensitivity 13.66%
Exact Count 1646. 00
Exact Mat ched 1704. 00
Exact Specificity 6.61%
Exact Sensitivity 13.66%
Overl ap Count 11759. 00
Overl ap Mat ched 11394. 00
Overlap Specificity 47.19%
Overlap Sensitivity 91. 33%
Nuc Overl ap Count 11606. 00
Nuc Overl ap Matched 11318. 00

-94-

Nuc Overlap Specificity 46. 58%
Nuc Overlap Sensitivity 90. 72%
Al Introns Count 1729. 00
Al Introns Matched 1594. 00
All Introns Specificity 6. 94%
Al Introns Sensitivity 12. 78%
Al | Exons Count 1712. 00
Al'l Exons WMat ched 1704. 00
Al Exons Specificity 6. 87%
Al'l Exons Sensitivity 13. 66%
Exact Intron Count 9340. 00
Exact I ntron Matched 9902. 00
Exact Intron Specificity 37.48%
Exact Intron Sensitivity 79.37%
Exact Exon Count 10265. 00
Exact Exon Matched 10418. 00
Exact Exon Specificity 41. 20%
Exact Exon Sensitivity 83. 50%
Start Codon Count 4502. 00
Start Codon Matched 5162. 00
Start Codon Specificity 18. 07%
Start Codon Sensitivity 41. 38%
St op Codon Count 6803. 00
St op Codon Mat ched 7312. 00
Stop Codon Specificity 27.30%
St op Codon Sensitivity 58. 61%
Start Stop Count 2793. 00
Start Stop Matched 2998. 00
Start Stop Specificity 11. 21%
Start Stop Sensitivity 24. 03%
| nconpl et e
Count 1201. 00
Ann Count 1336. 00
Average Length 30893. 59
Total Length 37103201. 00
Aver age Codi ng Length 1279. 15
Total Coding Length 1536260. 00
Aver age Score 177. 17
Total Score 212783. 83
Exons Per 8.19
Total Exons 9834. 00
Correct Count 0. 00
Correct Matched 68. 00
Correct Specificity 0. 00%
Correct Sensitivity 5.09%
Exact Count 0. 00
Exact Mat ched 0. 00
Exact Specificity 0. 00%
Exact Sensitivity 0. 00%
Overl ap Count 571. 00
Overl ap Mat ched 1205. 00
Overlap Specificity 47.54%
Overlap Sensitivity 90. 19%
Nuc Overl ap Count 566. 00
Nuc Overl ap Matched 1199. 00
Nuc Overlap Specificity 47.13%
Nuc Overlap Sensitivity 89. 75%
Al Introns Count 8. 00
Al Introns Matched 197. 00
Al Introns Specificity 0.67%
Al Introns Sensitivity 14. 75%
Al'l Exons Count 0. 00
Al | Exons Matched 68. 00

-905-

Exon

All

Initial

Al Exons Specificity
Al Exons Sensitivity

Exact I ntron Count

Exact I ntron Matched
Exact Intron Specificity
Exact Intron Sensitivity
Exact Exon Count

Exact Exon Matched

Exact Exon Specificity

Exact Exon Sensitivity
Start Codon Count

Start Codon Mat ched
Start Codon Specificity
Start Codon Sensitivity
St op Codon Count

St op Codon Mat ched

St op Codon Specificity
St op Codon Sensitivity
Start Stop Count

Start Stop Matched
Start Stop Specificity
Start Stop Sensitivity

Count

Ann Count

Aver age Length

Total Length

Aver age Score

Total Score

Correct Count

Correct Matched

Correct Specificity
Correct Sensitivity
Overl ap Count

Overl ap Mat ched

Overlap Specificity
Overlap Sensitivity
Overl ap 80p Count

Overl ap 80p Mat ched
Overlap 80p Specificity
Overlap 80p Sensitivity

Splice 5 Count
Splice 5 Mt ched
Splice 5 Specificity
Splice 5 Sensitivity
Splice 3 Count
Splice 3 Matched
Splice 3 Specificity
Splice 3 Sensitivity
Count

Ann Count

Aver age Length

Total Length

Aver age Score

Total Score

Correct Count
Correct Matched

Correct Specificity
Correct Sensitivity
Overl ap Count

Overl ap Mat ched

0. 00%
5. 09%
476. 00
869. 00
39. 63%
65. 04%
524.00
907. 00
43. 63%
67. 89%
134.00
68. 00
11.16%
5. 09%
127. 00
323.00
10.57%
24.18%
0. 00
0.00

0. 00%
0. 00%

204729. 00
109883. 00
173. 20
35459553. 00
21.69
4440400. 20
78987. 00
78992. 00
38. 58%
71. 89%
92156. 00
92300. 00
45. 01%
84. 00%
84955. 00
85257. 00
41.50%
77.59%
84203. 00
84594. 00
41.13%
76. 99%
85864. 00
86150. 00
41. 94%
78. 40%

22002. 00
10164. 00
168. 70
3711673. 00
18. 96
417156. 27
4056. 00
3912. 00
18. 43%
38. 49%
6475. 00
6982. 00

-96-

Overl ap
Overl ap
Overl ap
Overl ap
Overl ap
Overl ap
Splice
Splice
Splice
Splice
Splice
Splice
Splice
Splice

Specificity
Sensitivity
80p Count
80p Mat ched
80p Specificity
80p Sensitivity
Count
Mat ched
Specificity
Sensitivity
Count
Mat ched
Specificity
Sensitivity

WwWwwo oo ag

| nt ernal

Count

Ann Count

Average Length

Total Length

Aver age Score

Total Score

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity
Overl ap Count
Overl ap Mat ched
Overlap Specificity
Overlap Sensitivity
Overl ap 80p Count
Overl ap 80p Mat ched
Overlap 80p Specificity
Overlap 80p Sensitivity
Splice Count
Splice Mat ched
Splice Specificity
Splice 5 Sensitivity
Splice Count
Splice Mat ched
Splice 3 Specificity
Splice Sensitivity

WwWwwour oo o

Ter m nal

Count

Ann Count

Average Length

Total Length

Aver age Score

Total Score

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity
Overl ap Count
Overl ap Mat ched
Overlap Specificity
Overlap Sensitivity
Overl ap 80p Count
Overl ap 80p Mat ched
Overlap 80p Specificity
Overlap 80p Sensitivity
Splice 5 Count
Splice 5 Matched
Splice 5 Specificity

29.43%
68. 69%
5001. 00
5063. 00
22.73%
49. 81%
4476. 00
4313. 00
20. 34%
42.43%
5863. 00
6395. 00
26. 65%
62. 92%

157247. 00
87588. 00
154. 42
24281817. 00
22.12
3478941. 25
68635. 00
68806. 00
43. 65%
78. 56%
77015. 00
76576. 00
48. 98%
87.43%
72257.00
72793. 00
45. 95%
83.11%
72006. 00
72441. 00
45.79%
82.71%
73046. 00
72810. 00
46. 45%
83. 13%

21745.00
10670. 00
237.55
5165434. 00
14.73
320222. 35
5973. 00
5978. 00
27.47%
56. 03%
7885. 00
7802. 00
36. 26%
73.12%
7047.00
6752. 00
32.41%
63. 28%
7193. 00
7330. 00
33. 08%

-97-

Nuc

Single

I ntron

All

Splice
Splice
Splice
Splice
Splice

5 Sensitivity
3 Count

3 Mat ched

3 Specificity
3 Sensitivity

Count

Ann Count

Average Length

Total Length

Aver age Score

Total Score

Correct Count

Correct Matched
Correct Specificity
Correct Sensitivity
Overl ap Count

Overl ap Mat ched
Overlap Specificity
Overlap Sensitivity
Overl ap 80p Count
Overl ap 80p Matched
Overl ap 80p Specificity
Overlap 80p Sensitivity
Splice Count
Splice Mat ched
Splice 5 Specificity
Splice Sensitivity
Splice Count
Splice Mat ched
Splice 3 Specificity
Splice Sensitivity

WwWwwaororo,

Count

Ann Count

Average Length

Total Length

Aver age Score

Total Score

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity
Overl ap Count

Overl ap Mat ched
Overlap Specificity
Overlap Sensitivity
Overl ap 80p Count
Overl ap 80p Matched
Overlap 80p Specificity
Overlap 80p Sensitivity
Splice Count
Splice Mat ched
Splice 5 Specificity
Splice Sensitivity
Splice Count
Splice Mat ched
Splice 3 Specificity
Splice Sensitivity

WwWwwaororo,

Count
Ann Count

68. 70%
6454. 00
6366. 00
29. 68%
59. 66%

3735. 00
1488. 00
615. 96
2300629. 00
59. 99
224080. 33
323.00
307. 00
8. 65%
20. 63%
781. 00
960. 00
20. 91%
64.52%
650. 00
665. 00
17. 40%
44.69%
528. 00
524.00
14. 14%
35.22%
501. 00
595. 00
13.41%
39. 99%

178610. 00
97658. 00
3316. 52
592363950. 00
0.00

0. 00
70985. 00
70989. 00
39. 74%
72.69%
88390. 00
87982. 00
49. 49%
90. 09%
75066. 00
75303. 00
42.03%
77.11%
78619. 00
79168. 00
44.02%
81.07%
78932. 00
79421. 00
44.19%
81. 33%

35459553. 00
18102268. 00

- 08-

Si gnal

Initial

Correct Count
Correct WMatched
Correct Specificity
Correct Sensitivity

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

| nt ernal

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

Ter m nal

Si ngl e

I ntron

Splice

Splice

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

Accept or

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity
Donor

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

Start Codon

Count

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

St op Codon

Count

14873635. 00
15115875. 00
41. 95%
83. 50%

3711673. 00
1835955. 00
1239150. 00
1373641. 00
33. 39%
74.82%

24281817. 00
12571788. 00
11095186. 00
10953990. 00
45. 69%
87.13%

5165434. 00
2400130. 00
1891305. 00
1853291. 00
36.61%
77.22%

2300629. 00
1298481. 00
647994. 00
937630. 00
28.17%
72.21%

592363950. 00
541215329. 00
254351879. 00
260829844. 00
42.94%
48. 19%

178992. 00
98254. 00
0. 00

0.00

0. 00%

0. 00%

179249. 00
97729. 00
0.00

0. 00

0. 00%

0. 00%

25700. 00
12656. 00
0. 00
0.00

0. 00%

0. 00%

25335. 00

-99-

Ann Count

Correct Count
Correct Matched
Correct Specificity
Correct Sensitivity

13074. 00
0. 00
0.00

0. 00%

0. 00%

- 100-

| ndex

= o J T 111 1R A
o] 1R -.19-
central dogma of molecular @Y.oooeeeriiiiiiiiiicce e ee T D -
Lo 11 1= (= T = 20-
(o700 (0] 1T =.5-
CONSEIVALION SEQUENCE........vvtrrreeeiieeseeeeerrersntanaa s e e e e e eaeeeesamansaaasaaaaaaaaaaeeaess -.9-,-90-
data types
ANN_LISTDOX....ccc e e e e e amemnnn e E (3"
= L= /TR .32-
2 L = PP PUPPTRUPPRTRPPRIE NC 2
(ST T 0] == 1 o S -32-
(o 11 1S (= R -~ 69-
ClUSTEI _COUNL.....oiiiieeeeee et eree e e e e e e e e e e e e e e amnna e e e e e -69-
T L0 [(=PSRN - 46-
1 T =.32-
1111 PPNt o Y2
L1 (0 T =32-
1122 1 LTI 4
(= T .32-
7= PP PTRUPTRPTRUPIRPIE G 1<
[I o] o :51-
L I < PP - 51-
=YY o TN =32-
T = T = 32-
[ST ORI -.32-
1E5) 10 1)R - 73-
0L (=T I 151 o o S UESPPUPRUSUPT Ty £C &
27 PSP = 32-
(=TS0 11 1] o : 65-
STALS SEIUCT. ...t er e e ettt e e e et e e emene e e e eeenennn T D2 -
L= 1 ST o OSSPSR - 40-
[0 [1070 TS = 7-
[1Y (1 10 11 o See Eval Functions
DN A et ————————a ettt et —————— e rab e ra e eaaaa -.6-
BUKBIYAES ...ttt et e e e e emer e e et e e e e e e e e e e e =5-
Eval
COMMANd lINE INTEITACE e e e eaa e 27~
V= L LT o L] o AU UEPPPUURUPSRPPRRI I © I I
Functions
(D11] 01U 0] o I -21-,-26-,-30-,-70-
Evaluate.........ccovviiiiiiiieceee e evvvmmmessinneeennon 18-, - 24-, - 27 -, - 56 -
1| =Y RS -18-,-24-,-28-,-62-
General StatiStiCS.......vvvveiiiiiiiii e eeeeeeveeenea s 18-, - 24, - 27 -, - 61 -

(@Y7 o o P :20-,-26-,-29-,-67-
€1 PP 222-
(=0 [0 1T =T 0 L= 1 RSOOSR - 10-
0] = 115105 :12-
VAL DL e ————————— See programs
BVl PIM e Seelibraries
EVAIUALE. ...ttt See Eval Functions
evaluate _gtf.al... ..o See programs
FASTAL . -10-,-22-,-89-
1= PSSR See Eval Functions
1L 0 € 50 o | R PUPURRRP See programs
[0 1T T PP =9-
OENE EXPIESSIONL...ciiiiiiiieeeeee e et s e e simme e e e e e e e e s e s aa e eeaebbbbaene s nnsbsbbaeeseeeeeeeessmnsseneeeeee s D =
JENE STIUCTUIE.... ittt eeeme et et e e et e e e et e e eetn e e eenneeeennmeens T D=y = [=
General StAtISHICS . uuuueeiiiiiiieiiee e See Eval Functions
get_diStribUtiON.Pl.......coooii e See programs
get_general_StatS.pl...........ueiiiiii i See programs
get_overlap_StatS.pl........ooo i See programs
[0 11T] 0] SR SERRS -10-,-25-,-81-
(€T o] o DTS PSP P PP PP PPPPPRR See Eval Functions
graph_gtfS.Al......eeeee e —— See programs
I T PPPEPERURRRRR -7-,-10-,-51-, -86-
Fields
= L] 010 (O PUSURPPPPPRRRRRE S o £
L= 3 o PR PP TPPPPRRRRO o o o
L=T= UL = SRR - 86-
L= L0 [PPSR PPPPPPPRR - 87-
160] PSP UPPPT - 86-
ST<T0 | AT 0 0= PSP PPRPUPPTRPPRRRPPE T o [1
10 LU (o PSPPSR - 86-
] £ | TP PRPPPPPPTI -~ 86-
L I T = -12-,-51-
[I o] o PP See libraries
GTF.pM Sty ODJECES. ...coiiiieeeeeeee e - 33-
T TL =TI = (o] o PP PP = 7-
libraries
BVl P, e ——————— = 51-
L I o o] 1 PSPPSR = 33-
1S3 O 1] PP U R PR PPPPPPRPPRUPRR =22-
0] PO =5-
(@Y7 - o U UUURPPPPPPUPRRP See Eval Functions
(0)V/=Tq FoT ol o] 0] 01T £ /PP PPPPPPPPPPPPPR - 20-
[T = TV 1 =T E o o) PP -5-
programs
VAL DL ——————————————— :22-,-72-

-102-

evaluate_gtf. L. =.27-,- 83-

LELLC=T S0 € 50 o SRR - 28-,-83-
get_diStriDULION.PL......cooir e -.30-,- 84-
get_general_StatS.pl..........eiiiiiiii i 2.27-, - 83-
get_overlap_StatS.pl.........ooo i :.29-, - 84-
graph_gtfS. Al -28-,-84-
Validate _gtif.pl... ..o - 10-
01 (0] =T Y0 (== T =5-
10 1= o F PSP PPPPPPPPTPPPP =5-
RIN A ettt ettt e e e e e e aaa s =.5-
] 0] [0 I LTS PP PP P PP PP PPPPPPPPPPPPR =7-
S ¢= 1 o0 0 (o] KPP PP PP PP PPPPPPPPPPRRR = 7-
510 o J oo o (o] o FE PP PP PP PP PPPPPPPPPPPPR =7-
LCT 00011 F= LI (o] PP TP PR PRSP = 7-
L= T E o 1) A =Yoo o PSP -12-
1= T Ko 101) o T RUSRRRR :5-,-6-
EFANSIALION. ...t -5-,-6-
AT 1N S0 N :9-,-90-
untranslated region (UTR)......oooeeiiiiiiiie v e e e emrmas s e e e e e aaaeeaes w7~
validate _gtf.pl.... ..o e See programs

- 103-

References

http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.sFRff specification.

http:/Avww.cs.wisc.edu/~ghostGhostview.

http://blast.wustl.edu/Gish, W., WUBLAST.

http://www.gnuplot.infof Gnuplot.

Burge, C. and S. Karlif®rediction of complete gene structures in human genomic

DNA. J Mol Biol, 1997268(1): p. 7894.

Burge, C.B. and S. Karliffinding the genesin genomic DNA. Curr Opin Struct Biol,

1998.8(3): p. 34654.

7. Burset, M. and R. Guig&yvaluation of gene structure prediction programs.
Genomics, 199634(3): p. 35367.

8. Fickett, J.W.Finding genes by computer: the state of the art. Trends Genet, 1996.
12(8): p. 31620.

9. Flicek, P., et all,everaging the mouse genome for gene prediction in human: from
whole-genome shotgun reads to a global synteny map. Genome Res, 20033(1): p.
46-54.

10. Guigo, R., et alAn assessment of gene prediction accuracy in large DNA
sequences. Genome Res, 20000(10): p. 163142.

11. Guigo, R., et alRrediction of gene structure. J Md Biol, 1992.226(1): p. 14157.

12. Korf, 1., et al.)ntegrating genomic homology into gene structure prediction.
Bioinformatics, 200117 Suppl 1: p. S1468.

13. Lodish, H., et alMolecular Cell Biology. 4th ed. 2000, New York: W. H. Freeman
and Conpany.

14. Mathe, C., et alCurrent methods of gene prediction, their strengths and
weaknesses. Nucleic Acids Res, 20030(19): p. 410317.

15. Parra, G., et alGomparative gene prediction in human and mouse. Genome Res,

2003.13(1): p. 10817.

agrwnE

o

- 104-

